cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357949 a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/k!.

Original entry on oeis.org

1, 1, 2, 6, 25, 122, 726, 5064, 40441, 363603, 3633852, 39957180, 479364841, 6230652124, 87218228180, 1308153551160, 20929018724041, 355774626352325, 6403681619657310, 121666026312835410, 2433257739200536081, 51097345199332200726, 1124122383340449444042
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n-3k)!/k!,{k,0,Floor[n/4]}],{n,0,30}] (* Harvey P. Dale, Apr 23 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!/k!);

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-3) * a(n-3) + (n-6) * a(n-4) - 3 * a(n-5) - 3 * a(n-6) - 3 * a(n-7) + 4 for n > 6.
a(n) ~ n! * (1 + 1/n^3 + 3/n^4 + 7/n^5 + 31/(2*n^6) + 77/(2*n^7) + 133/n^8 + 3913/(6*n^9) + 7473/(2*n^10) + ...). - Vaclav Kotesovec, Nov 25 2022
G.f.: Sum_{k>=0} k! * x^k/(1-x^4)^(k+1). - Seiichi Manyama, Feb 26 2024

A358494 a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/k!.

Original entry on oeis.org

1, 1, 2, 6, 24, 121, 722, 5046, 40344, 363000, 3629521, 39921843, 479041932, 6227383740, 87181920360, 1307714287321, 20923268909764, 355693655298260, 6402460885833720, 121646408103159240, 2432922931206035521, 51091297862251106885, 1124007130194903158430
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-4*k)!/k!);

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-3) * a(n-3) + (n-4) * a(n-4) + (n-8) * a(n-5) - 4 * a(n-6) - 4 * a(n-7) - 4 * a(n-8) - 4 * a(n-9) + 5 for n > 8.
G.f.: Sum_{k>=0} k! * x^k/(1-x^5)^(k+1). - Seiichi Manyama, Feb 26 2024

A370511 Expansion of Sum_{k>=0} k! * ( x/(1-x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 25, 124, 738, 5137, 40926, 367236, 3664321, 40241168, 482282700, 6263450401, 87618831730, 1313438757210, 21003941166601, 356910563528412, 6422026243338846, 121980432505328545, 2438957859604373534, 51206341993873093608, 1126314833020691642497
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1-x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)!*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-3*k)! * binomial(n-2*k-1,k).
Showing 1-3 of 3 results.