cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358493 a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/k!.

Original entry on oeis.org

1, 1, 2, 7, 26, 126, 745, 5163, 41052, 367981, 3669484, 40282220, 482650681, 6267119885, 87659113950, 1313921407891, 21010208286486, 356998222642362, 6423340164746737, 122001442713615031, 2439314857827015896, 51212765334037840345, 1126436834463405257528
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Factorial(n-2*k)/Factorial(k): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, May 01 2024
    
  • Mathematica
    Table[Sum[(n-2*k)!/k!, {k,0,Floor[n/3]}], {n,0,30}] (* G. C. Greubel, May 01 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!/k!);
    
  • SageMath
    [sum(factorial(n-2*k)/factorial(k) for k in range(1+n//3)) for n in range(31)] # G. C. Greubel, May 01 2024

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-4) * a(n-3) - 2 * a(n-4) - 2 * a(n-5) + 3 for n > 4.
a(n) ~ n! * (1 + 1/n^2 + 1/n^3 + 3/(2*n^4) + 4/n^5 + 41/(3*n^6) + 97/(2*n^7) + 1399/(8*n^8) + 3961/(6*n^9) + 322951/(120*n^10) + ...). - Vaclav Kotesovec, Nov 24 2022
G.f.: Sum_{k>=0} k! * x^k/(1-x^3)^(k+1). - Seiichi Manyama, Feb 26 2024

A358494 a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/k!.

Original entry on oeis.org

1, 1, 2, 6, 24, 121, 722, 5046, 40344, 363000, 3629521, 39921843, 479041932, 6227383740, 87181920360, 1307714287321, 20923268909764, 355693655298260, 6402460885833720, 121646408103159240, 2432922931206035521, 51091297862251106885, 1124007130194903158430
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (n-4*k)!/k!);

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-3) * a(n-3) + (n-4) * a(n-4) + (n-8) * a(n-5) - 4 * a(n-6) - 4 * a(n-7) - 4 * a(n-8) - 4 * a(n-9) + 5 for n > 8.
G.f.: Sum_{k>=0} k! * x^k/(1-x^5)^(k+1). - Seiichi Manyama, Feb 26 2024
Showing 1-2 of 2 results.