cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358493 a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/k!.

Original entry on oeis.org

1, 1, 2, 7, 26, 126, 745, 5163, 41052, 367981, 3669484, 40282220, 482650681, 6267119885, 87659113950, 1313921407891, 21010208286486, 356998222642362, 6423340164746737, 122001442713615031, 2439314857827015896, 51212765334037840345, 1126436834463405257528
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Factorial(n-2*k)/Factorial(k): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, May 01 2024
    
  • Mathematica
    Table[Sum[(n-2*k)!/k!, {k,0,Floor[n/3]}], {n,0,30}] (* G. C. Greubel, May 01 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!/k!);
    
  • SageMath
    [sum(factorial(n-2*k)/factorial(k) for k in range(1+n//3)) for n in range(31)] # G. C. Greubel, May 01 2024

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-4) * a(n-3) - 2 * a(n-4) - 2 * a(n-5) + 3 for n > 4.
a(n) ~ n! * (1 + 1/n^2 + 1/n^3 + 3/(2*n^4) + 4/n^5 + 41/(3*n^6) + 97/(2*n^7) + 1399/(8*n^8) + 3961/(6*n^9) + 322951/(120*n^10) + ...). - Vaclav Kotesovec, Nov 24 2022
G.f.: Sum_{k>=0} k! * x^k/(1-x^3)^(k+1). - Seiichi Manyama, Feb 26 2024

A370670 Expansion of Sum_{k>=0} k! * ( x/(1+x^3) )^k.

Original entry on oeis.org

1, 1, 2, 6, 23, 116, 702, 4945, 39726, 358596, 3593759, 39596032, 475750740, 6190873441, 86740653730, 1301942638170, 20842037779079, 354469561697988, 6382795892548194, 121310901632237857, 2426864464216669694, 50975856191753357928, 1121692313538562441535
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1+x^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*(n-3*k)!*binomial(n-2*k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-3*k)! * binomial(n-2*k-1,k).
a(n) = n*a(n-1) + a(n-3) + (n-6)*a(n-4) + 2*a(n-6) for n > 6.
Showing 1-2 of 2 results.