cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259834 Number of permutations of [n] with no fixed points where the maximal displacement of an element equals n-1.

Original entry on oeis.org

0, 0, 1, 2, 5, 20, 97, 574, 3973, 31520, 281825, 2803418, 30704101, 367114252, 4757800705, 66432995030, 994204132517, 15875195019224, 269397248811073, 4841453414347570, 91856764780324165, 1834779993945449348, 38485629141294791201, 845788826477292504302
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2015

Keywords

Comments

a(n) counts permutations p of [n] such that p(i) <> i and (p(1) = n or p(n) = 1).

Examples

			a(2) = 1: 21.
a(3) = 2: 231, 312.
a(4) = 5: 2341, 3421, 4123, 4312, 4321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [0, 0, 1][n+1],
         ((2*n^2-11*n+13)*a(n-1) +(2*n-5)*(n-3)*a(n-2))/(2*n-7))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Join[{0, 0}, Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == (n - m)*y[m] + (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 2, 30}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
    Table[If[n<2, 0, Subfactorial[n-2]+2*Subfactorial[n-1]], {n,0,23}] (* Peter Luschny, Oct 04 2017 *)
  • Python
    def A259834_list(len):
        L, u, x, y = [0], 1, 0, 0
        for n in range(len):
            y, x, u = x, x*n + u, -u
            L.append(y + 2*x)
        L[1] = 0
        return L
    print(A259834_list(23)) # Peter Luschny, Oct 04 2017

Formula

a(n) = ((2*n^2-11*n+13)*a(n-1) + (2*n-5)*(n-3)*a(n-2))/(2*n-7) for n > 2.
a(n) = (n-2)! * [x^(n-2)] exp(-x)*(x+1)/(x-1)^2 for n > 1.
a(n) ~ 2 * (n-1)! / exp(1). - Vaclav Kotesovec, Jul 07 2015
a(n) = y(n,n), n > 1, where y(m+1,n) = (n-m)*y(m,n) + (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
From Peter Luschny, Oct 05 2017: (Start)
a(n) = (Gamma(n-1, -1) + 2*Gamma(n, -1)) / e for n >= 2.
a(n) = A000166(n-2) + 2*A000166(n-1) for n >= 2.
a(n) = (2*n-1)*A000166(n-2) - 2*(-1)^n for n >= 2.
a(n) = A000255(n-2) + A000166(n-1) for n >= 2.
a(n+2) = (-1)^n*(-hypergeom([1,1-n], [], 1) + hypergeom([2,2-n], [], 1)) = A292898(2, n) for n >= 0.
a(n) ~ 2*sqrt(2*Pi)*exp(-n-1)*n^(n-1/2). (End)
a(n+2) = A306455(n) + n! for n >= 0. - Alois P. Heinz, Feb 16 2019

A292897 a(n) = -Sum_{k=1..3}(-1)^(n-k)*hypergeom([k, k-n-3], [], 1).

Original entry on oeis.org

3, 7, 27, 129, 755, 5187, 40923, 364333, 3611811, 39448095, 470573723, 6086754297, 84847445907, 1267953887899, 20220829211355, 342759892460517, 6153802869270083, 116652857267320503, 2328215691932062491, 48800672765792988145, 1071780020853500289843
Offset: 0

Views

Author

Peter Luschny, Oct 05 2017

Keywords

Crossrefs

Cf. A000166 (m=1), A259834 (m=2), this sequence (m=3), A292898 (m>=1).

Programs

  • Maple
    A292897 := n -> -add((-1)^(n-k)*hypergeom([k, k-n-3], [], 1), k=1..3):
    seq(simplify(A292897(n)), n=0..20);
  • Mathematica
    Table[-Sum[(-1)^(n-k)*HypergeometricPFQ[{k, k-n-3}, {}, 1], {k,1,3}], {n,0,20}] (* Vaclav Kotesovec, Jul 05 2018 *)

Formula

a(n) = A292898(3, n).
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: (5*n^2 - 6*n + 4)*a(n) = (5*n^3 - n^2 - 6*n + 9)*a(n-1) + (n-1)*(5*n^2 + 4*n + 3)*a(n-2).
a(n) ~ 5*sqrt(Pi/2) * n^(n + 5/2) / exp(n+1). (End)

A293295 a(n) = Sum_{k=1..n} (-1)^(n-k)*hypergeom([k, k-2-n], [], 1).

Original entry on oeis.org

1, 5, 27, 142, 847, 5817, 45733, 405836, 4012701, 43733965, 520794991, 6726601050, 93651619867, 1398047697137, 22275111534537, 377278848390232, 6768744159489913, 128228860181918421, 2557808459478878851, 53585748788874537830, 1176328664895760953831
Offset: 1

Views

Author

Peter Luschny, Oct 05 2017

Keywords

Crossrefs

Cf. A003470 (n=0), A193464 (n=1), this sequence (n=2), A292898 (n>=0).

Programs

  • Maple
    A293295 := n -> add((-1)^(n-k)*hypergeom([k, k-2-n], [], 1), k=1..n):
    seq(simplify(A293295(n)), n=1..20);
  • Mathematica
    Table[Sum[(-1)^(n-k)*HypergeometricPFQ[{k, k-2-n}, {}, 1], {k,1,n}], {n,1,20}] (* Vaclav Kotesovec, Jul 05 2018 *)

Formula

a(n) = A292898(n, 2).
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: (n^2 - 4*n + 5)*a(n) = (n^3 - 3*n^2 + 3*n + 2)*a(n-1) - (n-1)*(2*n - 3)*a(n-2) - (n^3 - 3*n^2 + 2*n + 1)*a(n-3) + (n^2 - 2*n + 2)*a(n-4).
a(n) ~ n * n!.
a(n) ~ sqrt(2*Pi) * n^(n + 3/2) / exp(n). (End)
Showing 1-3 of 3 results.