cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A292898 Array read by ascending antidiagonals, A(m, n) = Sum_{k=1..m}(-1)^(k-n-m)* hypergeom([k, k-n-m], [], 1) for m>=1 and n>=0.

Original entry on oeis.org

1, 1, 0, 3, 2, 1, 8, 7, 5, 2, 31, 30, 27, 20, 9, 147, 146, 142, 129, 97, 44, 853, 852, 847, 826, 755, 574, 265, 5824, 5823, 5817, 5786, 5652, 5187, 3973, 1854, 45741, 45740, 45733, 45690, 45463, 44462, 40923, 31520, 14833
Offset: 0

Views

Author

Peter Luschny, Oct 05 2017

Keywords

Examples

			Array starts:
[m\n]   0       1      2       3        4         5          6
-------------------------------------------------------------------
[1]     1,      0,     1,      2,       9,       44,       265, ...  [A000166]
[2]     1,      2,     5,     20,      97,      574,      3973, ...  [A259834(n+2)]
[3]     3,      7,    27,    129,     755,     5187,     40923, ...  [A292897]
[4]     8,     30,   142,    826,    5652,    44462,    394970, ...
[5]    31,    146,   847,   5786,   45463,   403514,   3990679, ...
[6]   147,    852,  5817,  45690,  405423,  4008768,  43692933, ...
[7]   853,   5823, 45733, 405779, 4012101, 43727687, 520723477, ...
  A003470,A193464,A293295.
Displayed as a triangle:
[1]     1;
[2]     1,      0;
[3]     3,      2,     1;
[4]     8,      7,     5,    2;
[5]    31,     30,    27,   20,    9;
[6]   147,    146,   142,  129,   97,   44;
[7]   853,    852,   847,  826,  755,  574,  265;
[8]  5824,   5823,  5817, 5786, 5652, 5187, 3973, 1854;
  A003470,A193464,A293295.
This triangle has row sums A193463.
		

Crossrefs

Programs

  • Maple
    A := (m, n) -> add((-1)^(k-n-m)*hypergeom([k, k-n-m], [], 1), k=1..m):
    seq(lprint(seq(simplify(A(m, n)), n=0..6)), m=1..7);
  • Mathematica
    A[m_, n_] :=  Sum[(-1)^(k-n-m) HypergeometricPFQ[{k, k-n-m},{}, 1], {k, 1, m} ];
    Table[Table[A[m, n], {n,0,6}], {m,1,7}]
Showing 1-1 of 1 results.