cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001632 Smallest prime p such that there is a gap of 2n between p and previous prime.

Original entry on oeis.org

5, 11, 29, 97, 149, 211, 127, 1847, 541, 907, 1151, 1693, 2503, 2999, 4327, 5623, 1361, 9587, 30631, 19373, 16183, 15727, 81509, 28277, 31957, 19661, 35671, 82129, 44351, 43391, 34123, 89753, 162209, 134581, 173429, 31469, 404671, 212777
Offset: 1

Views

Author

Keywords

Comments

Smallest prime preceded by 2n-1 successive composites. - Lekraj Beedassy, Apr 23 2010

Examples

			The first time a gap of 4 occurs between primes is between 7 and 11, so A000230(2)=7 and A001632(2)=11.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 97, p. 34, Ellipses, Paris 2008.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{pr=Partition[Prime[Range[35000]],2,1]},Transpose[ Flatten[ Table[ Select[pr,#[[2]]-#[[1]]==2n&,1],{n,40}],1]][[2]]] (* Harvey P. Dale, Apr 20 2012 *)
  • PARI
    LIMIT=10^9; a=[]; i=2; o=2; g=0; forprime(p=3,LIMIT, bittest(g,-o+o=p) && next; a=concat(a,[[p,p-precprime(p-1)]]); g+=1<=i && a[i][2]<2*i, print1(a[i][1]",");i++)) \\ a[1] = [3, 1] is not printed, cf. A000230(0). Limit 10^7 yields a(1),...,a(70) in 0.3 sec @ 2.5 GHz. \\ M. F. Hasler, Jan 13 2011, updated Jan 26 2015.

Formula

a(n) = 2n + A000230(n) = nextprime(A000230(n)).
a(n) = A000040(A038664(n)+1). - M. F. Hasler, Jan 26 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 28 2000 and from Labos Elemer, Nov 29 2000
Terms a(1)-a(146) checked with the PARI program by M. F. Hasler, Jan 13 2011, Jan 26 2015