A001632 Smallest prime p such that there is a gap of 2n between p and previous prime.
5, 11, 29, 97, 149, 211, 127, 1847, 541, 907, 1151, 1693, 2503, 2999, 4327, 5623, 1361, 9587, 30631, 19373, 16183, 15727, 81509, 28277, 31957, 19661, 35671, 82129, 44351, 43391, 34123, 89753, 162209, 134581, 173429, 31469, 404671, 212777
Offset: 1
Examples
The first time a gap of 4 occurs between primes is between 7 and 11, so A000230(2)=7 and A001632(2)=11.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 97, p. 34, Ellipses, Paris 2008.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..595 (from Nicely)
- L. J. Lander and T. R. Parkin, On the first appearance of prime differences, Math. Comp., 21 (1967), 483-488.
- Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
- Index entries for primes, gaps between
Programs
-
Mathematica
With[{pr=Partition[Prime[Range[35000]],2,1]},Transpose[ Flatten[ Table[ Select[pr,#[[2]]-#[[1]]==2n&,1],{n,40}],1]][[2]]] (* Harvey P. Dale, Apr 20 2012 *)
-
PARI
LIMIT=10^9; a=[]; i=2; o=2; g=0; forprime(p=3,LIMIT, bittest(g,-o+o=p) && next; a=concat(a,[[p,p-precprime(p-1)]]); g+=1<=i && a[i][2]<2*i, print1(a[i][1]",");i++)) \\ a[1] = [3, 1] is not printed, cf. A000230(0). Limit 10^7 yields a(1),...,a(70) in 0.3 sec @ 2.5 GHz. \\ M. F. Hasler, Jan 13 2011, updated Jan 26 2015.
Formula
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Nov 28 2000 and from Labos Elemer, Nov 29 2000
Terms a(1)-a(146) checked with the PARI program by M. F. Hasler, Jan 13 2011, Jan 26 2015
Comments