cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001670 k appears k times (k even).

Original entry on oeis.org

2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
Offset: 1

Views

Author

Keywords

Crossrefs

Equals A130829(n) - 1.

Programs

  • MATLAB
    a = @(n) 2*floor((sqrt(4*n-3)+1)/2); % Néstor Jofré, Apr 24 2017
    
  • Magma
    [2*Round(Sqrt(n)): n in [1..70]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(2*n $ 2*n, n = 1 .. 10); # Robert Israel, Jan 14 2015
  • Mathematica
    a[1]=2, a[2]=2, a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 11 2010 *)
    Flatten[Table[Table[n,{n}],{n,2,16,2}]] (* Harvey P. Dale, May 31 2012 *)
  • PARI
    a(n)=round(sqrt(n))<<1 \\ Charles R Greathouse IV, Jun 23 2011
    
  • Python
    from math import isqrt
    def A001670(n): return (m:=isqrt(n))+int((n-m*(m+1)<<2)>=1)<<1 # Chai Wah Wu, Jul 29 2022

Formula

a(n) = 2*floor(1/2 + sqrt(n)). - Antonio Esposito, Jan 21 2002; corrected by Branko Curgus, May 11 2010
With a different offset: g.f. = Sum_{j>=0} 2*x^(j^2+i)/(1-x). - Ralf Stephan, Mar 11 2003
From Branko Curgus, May 11 2010: (Start)
a(n) = a(n - a(n-2)) + 2; a(1)=2, a(2)=2.
a(n) = 2*round(sqrt(n)). (End)
G.f.: x^(3/4)*theta_2(0,x)/(1-x) where theta_2 is the second Jacobi theta function. - Robert Israel, Jan 14 2015
a(n) = 2*floor((sqrt(4*n-3)+1)/2). - Néstor Jofré, Apr 24 2017

Extensions

Offset changed from 2 to 1 by Vincenzo Librandi, Jun 23 2011