cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001675 a(n) = round(sqrt( 2*Pi )^n).

Original entry on oeis.org

1, 3, 6, 16, 39, 99, 248, 622, 1559, 3907, 9793, 24546, 61529, 154230, 386598, 969056, 2429064, 6088760, 15262259, 38256810, 95895601, 240374624, 602529829, 1510318305, 3785806568, 9489609784, 23786924201, 59624976768, 149457652642, 374634777972
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001674 (floor sqrt(2 Pi)^n), A001698 (ceiling sqrt(2 Pi)^n).
Cf. A017911 (round sqrt(2)), A000227 (round e^n), A002160 (round Pi^n).

Programs

  • Mathematica
    Table[Floor[Sqrt[2*Pi]^n + 1/2], {n, 0, 50}] (* T. D. Noe, Aug 09 2012 *)
    Round[(Sqrt[2*Pi])^Range[0,30] ] (* Harvey P. Dale, Jun 05 2018 *)
  • PARI
    apply( a(n)=(2*Pi)^(n/2)\/1, [0..40]) \\ M. F. Hasler, May 29 2018