A001691 Number of two-element generating sets in the symmetric group S_n.
0, 1, 9, 108, 3420, 114480, 7786800, 497266560, 42616445760, 4320959126400, 534444478444800, 77699101730342400, 13282131639801024000
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J. Denes, Some combinatorial properties of transformations and their connections with the theory of graphs, J. Combin. Theory, 9 (1970), 108-116.
Programs
-
GAP
a := function(n) local tom, mu, lens, orders, num, k; tom := TableOfMarks(Concatenation("S",String(n))); if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi; mu := MoebiusTom(tom).mu; lens := LengthsTom(tom); orders := OrdersTom(tom); num := 0; for k in [1 .. Length(lens)] do if IsBound(mu[k]) then num := num + mu[k] * lens[k] * Binomial(orders[k],2); fi; od; return num; end; # Stephen A. Silver, Feb 20 2013
Formula
a(n) = A071605(n)/2 for n > 2.
Extensions
a(8)-a(9) (derived from A071605) added by Stephen A. Silver, Feb 17 2013
a(10)-a(13) added by Stephen A. Silver, Feb 20 2013