A001703 Decimal concatenation of n, n+1, and n+2.
12, 123, 234, 345, 456, 567, 678, 789, 8910, 91011, 101112, 111213, 121314, 131415, 141516, 151617, 161718, 171819, 181920, 192021, 202122, 212223, 222324, 232425, 242526, 252627, 262728, 272829, 282930, 293031, 303132, 313233, 323334, 333435, 343536, 353637, 363738
Offset: 0
Examples
a(8) = 8910 since the three consecutive numbers starting with 8 are 8, 9, 10, and these concatenate to 8910. (This is the first term that differs from A193431).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
read(transforms) : A001703 := proc(n) digcatL([n,n+1,n+2]) ; end proc: seq(A001703(n),n=1..20) ; # R. J. Mathar, Mar 29 2017 # Third Maple program: a:= n-> parse(cat(n, n+1, n+2)): seq(a(n), n=0..50); # Alois P. Heinz, Mar 29 2017
-
Mathematica
concat3Nums[n_] := FromDigits@ Flatten@ IntegerDigits[{n, n + 1, n + 2}]; Array[concat3Nums, 25] (* Robert G. Wilson v *)
-
PARI
a(n)=eval(Str(n,n+1,n+2)) \\ Charles R Greathouse IV, Oct 08 2011
-
Python
for n in range(100): print(int(str(n)+str(n+1)+str(n+2))) # David F. Marrs, Sep 18 2018
Formula
The portion of the sequence with all three numbers having d digits - i.e., n in 10^(d-1)..10^d-3 - is in arithmetic sequence: a(n) = (10^(2*d)+10^d+1)*n + (10^d+2). - Franklin T. Adams-Watters, Oct 07 2011
Extensions
Initial term 12 added and offset changed to 0 at the suggestion of R. J. Mathar. - N. J. A. Sloane, Mar 29 2017
Comments