A319744 Partial sums of bouncy numbers (A152054).
101, 203, 306, 410, 515, 621, 728, 836, 945, 1065, 1186, 1316, 1447, 1579, 1719, 1860, 2002, 2145, 2295, 2446, 2598, 2751, 2905, 3065, 3226, 3388, 3551, 3715, 3880, 4050, 4221, 4393, 4566, 4740, 4915, 5091, 5271, 5452, 5634, 5817, 6001, 6186, 6372, 6559, 6749, 6940, 7132, 7325, 7519
Offset: 1
Examples
a(1) = 101. a(2) = 101 + 102 = 203. a(10) = 101 + 102 + 103 + 104 + 105 + 106 + 107 + 108 + 109 + 120 = 1065.
Links
- David F. Marrs, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A152054 (bouncy numbers).
Programs
-
Python
for n in range(50): a = n b = 0 c = 0 while a: if ''.join(sorted(str(b))) != str(b) and ''.join(sorted(str(b)))[::-1] != str(b): c += b; a -= 1 b += 1 print(c)
-
Python
from itertools import count, islice def A319744_gen(): # generator of terms c = 0 for n in count(101): l = len(s:=tuple(int(d) for d in str(n))) for i in range(1,l-1): if (s[i-1]-s[i])*(s[i]-s[i+1]) < 0: c += n yield c break A319744_list = list(islice(A319744_gen(),30)) # Chai Wah Wu, Jul 28 2023