cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David F. Marrs

David F. Marrs's wiki page.

David F. Marrs has authored 4 sequences.

A319744 Partial sums of bouncy numbers (A152054).

Original entry on oeis.org

101, 203, 306, 410, 515, 621, 728, 836, 945, 1065, 1186, 1316, 1447, 1579, 1719, 1860, 2002, 2145, 2295, 2446, 2598, 2751, 2905, 3065, 3226, 3388, 3551, 3715, 3880, 4050, 4221, 4393, 4566, 4740, 4915, 5091, 5271, 5452, 5634, 5817, 6001, 6186, 6372, 6559, 6749, 6940, 7132, 7325, 7519
Offset: 1

Author

David F. Marrs, Oct 21 2018

Keywords

Examples

			a(1) = 101.
a(2) = 101 + 102 = 203.
a(10) = 101 + 102 + 103 + 104 + 105 + 106 + 107 + 108 + 109 + 120 = 1065.
		

Crossrefs

Cf. A152054 (bouncy numbers).

Programs

  • Python
    for n in range(50):
      a = n
      b = 0
      c = 0
      while a:
        if ''.join(sorted(str(b))) != str(b) and ''.join(sorted(str(b)))[::-1] != str(b): c += b; a -= 1
        b += 1
      print(c)
    
  • Python
    from itertools import count, islice
    def A319744_gen(): # generator of terms
        c = 0
        for n in count(101):
            l = len(s:=tuple(int(d) for d in str(n)))
            for i in range(1,l-1):
                if (s[i-1]-s[i])*(s[i]-s[i+1]) < 0:
                    c += n
                    yield c
                    break
    A319744_list = list(islice(A319744_gen(),30)) # Chai Wah Wu, Jul 28 2023

A303029 From a riddle, see Puzzling.SE link.

Original entry on oeis.org

3, 1, 4, 8, 8, 21, 21, 62, 128, 190, 430, 831, 1451, 3030, 6143, 12286, 24361, 48850, 85497, 134347, 268694, 583208, 1071746, 2192342, 3264088, 7514425, 14042601, 24821114, 46378140, 99867664, 171066918, 270934582, 634625444, 1272514976, 2449009584, 0, 2449009584
Offset: 0

Author

David F. Marrs, Aug 16 2018

Keywords

Examples

			a(0,1,2) = 3,1,4
To continue, we use the decimal expansion of Pi = 3.14159...:
a(3) = 3+1+4 (3-bonacci) = 8
a(4) = 8 (1-bonacci) = 8
a(5) = 1+4+8+8 (4-bonacci) = 21
a(6) = 21 (1-bonacci) = 21
a(7) = 21+21+8+8+4 (5-bonacci) = 62
...
		

Crossrefs

Cf. A000796.

Formula

a(n) = 0 for all n > 362. - Alois P. Heinz, Aug 18 2018
From Jianing Song, Dec 25 2022: (Start)
Let d_k = A000796(k+1) be the k-th digit of Pi, then a(n) = a(n-1) + a(n-2) + ... + a(n-d_{n-3}) for n >= 3.
If there exists consecutive 9 digits ...d_{k}d_{k+1}...d_{k+8}... of Pi such that d_{k+i} <= i for i = 0..8, then a(n) = 0 for all n >= k+3. The 360th to 368th digits of Pi are ...001133053..., so a(n) = 0 for all n >= 363. (End)

A305989 Numbers in binary reversed.

Original entry on oeis.org

0, 1, 1, 11, 1, 101, 11, 111, 1, 1001, 101, 1101, 11, 1011, 111, 1111, 1, 10001, 1001, 11001, 101, 10101, 1101, 11101, 11, 10011, 1011, 11011, 111, 10111, 1111, 11111, 1, 100001, 10001, 110001, 1001, 101001, 11001, 111001, 101, 100101, 10101, 110101, 1101, 101101, 11101, 111101, 11, 100011, 10011
Offset: 0

Author

David F. Marrs, Jun 16 2018

Keywords

Examples

			11 is 1011 in binary, and reversing it gives 1101 = a(11).
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(convert(n, base, 2)[])):
    seq(a(n), n=0..75);  # Alois P. Heinz, Jun 17 2018
  • Mathematica
    Table[FromDigits@ Reverse@ IntegerDigits[n, 2], {n, 0, 50}]
  • PARI
    a(n) = fromdigits(Vecrev(digits(n, 2)), 10);
    
  • Python
    print(0)
    for i in range(1,50):
       print(format(i, 'b')[::-1].strip("0"))

Formula

a(n) = A004086(A007088(n)).

A305877 Numbers in base 3 reversed.

Original entry on oeis.org

0, 1, 2, 1, 11, 21, 2, 12, 22, 1, 101, 201, 11, 111, 211, 21, 121, 221, 2, 102, 202, 12, 112, 212, 22, 122, 222, 1, 1001, 2001, 101, 1101, 2101, 201, 1201, 2201, 11, 1011, 2011, 111, 1111, 2111, 211, 1211, 2211, 21, 1021, 2021, 121, 1121, 2121, 221, 1221, 2221, 2
Offset: 0

Author

David F. Marrs, Jun 13 2018

Keywords

Examples

			11 is 102 in base 3, and reversing it gives 201 = a(11).
		

Crossrefs

Cf. A004086 (in base 10), A007089, A030102 (when converted in base 10).

Programs

  • Maple
    a:= n-> parse(cat(convert(n, base, 3)[])):
    seq(a(n), n=0..75);  # Alois P. Heinz, Jun 17 2018
  • Mathematica
    Table[FromDigits@ Reverse@ IntegerDigits[n, 3], {n, 0, 54}] (* Giovanni Resta, Jun 13 2018 *)
  • PARI
    a(n) = fromdigits(Vecrev(digits(n, 3)), 10); \\ Michel Marcus, Jun 13 2018

Formula

a(n) = A004086(A007089(n)). - Felix Fröhlich, Jun 14 2018