cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001706 Generalized Stirling numbers.

Original entry on oeis.org

1, 9, 71, 580, 5104, 48860, 509004, 5753736, 70290936, 924118272, 13020978816, 195869441664, 3134328981120, 53180752331520, 953884282141440, 18037635241029120, 358689683932346880, 7483713725055744000, 163478034254755584000, 3731670622213083648000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=3,n=2) ~ exp(-x)/x^3*(1 - 9/x + 71/x^2 - 580/x^3 + 5104/x^4 - 48860/x^5 + the sequence given above). See A163931 and A163932 for more information. - Johannes W. Meijer, Oct 20 2009
a(n-1) is equal to -1 times the coefficient of x of the characteristic polynomial of the n X n matrix whose (i,j)-entry is equal to i+3 if i=j and is equal to 1 otherwise. - John M. Campbell, May 24 2011

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[-Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2]((((#1+3)))-1)+1&,{n,n}],x],x,1],{n,1,10}] (* John M. Campbell, May 24 2011 *)

Formula

E.g.f. (with offset 2): log(1 - x)^2 / (2 * (1 - x)^2).
a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+2, 2)*2^k*stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
a(n-1) = (1/2)*Sum_{i=0..n} binomial(n, i)*A000254(i)*A000254(n-i). - Benoit Cloitre, Mar 09 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-1) = |f(n,2,2)|, for n>=2. - Milan Janjic, Dec 21 2008
a(n) = (n+3)!*((gamma-1)*Psi(n+4)+2+gamma^2-17*gamma/6+sum(Psi(i+4)/(i+4),i = 0 .. n-1)). - Mark van Hoeij, Oct 26 2011

Extensions

More terms from Christian G. Bower