A163932
Triangle related to the asymptotic expansion of E(x,m=3,n).
Original entry on oeis.org
1, 3, 3, 11, 18, 6, 50, 105, 60, 10, 274, 675, 510, 150, 15, 1764, 4872, 4410, 1750, 315, 21, 13068, 39396, 40614, 19600, 4830, 588, 28, 109584, 354372, 403704, 224490, 68040, 11466, 1008, 36, 1026576, 3518100, 4342080, 2693250, 949095, 198450
Offset: 1
The first few rows of the triangle are:
[1]
[3, 3]
[11, 18, 6]
[50, 105, 60, 10]
-
nmax:=8; with(combinat): for n1 from 1 to nmax do for m from 1 to n1 do a(n1, m) := (-1)^(n1+m)*binomial(m+1, 2)*stirling1(n1+1, m+1) od: od: seq(seq(a(n1,m), m=1..n1), n1=1..nmax);
# End program 1
with(combinat): imax:=6; EA:=proc(x, m, n) local E, i; E := 0: for i from m-1 to imax+1 do E := E + sum((-1)^(m+k1+1)*binomial(k1, m-1)*n^(k1-m+1)* stirling1(i, k1), k1=m-1..i)/x^(i-m+1) od: E := exp(-x)/x^(m)*E: return(E); end: EA(x, 3, n);
# End program 2
-
a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+1, 2] * StirlingS1[n+1, m+1]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 42]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
for(n=1,10, for(m=1,n, print1((-1)^(n+m)*binomial(m+1,2) *stirling(n+1,m+1,1), ", "))) \\ G. C. Greubel, Aug 08 2017
A001713
Generalized Stirling numbers.
Original entry on oeis.org
1, 18, 245, 3135, 40369, 537628, 7494416, 109911300, 1698920916, 27679825272, 474957547272, 8572072384512, 162478082312064, 3229079010579072, 67177961946534528, 1460629706845766400, 33139181950164806400, 783398920650352012800, 19268391564147377318400
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
-
nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*3^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 20 2016
-
b(n) = prod(r=0, n+2, r+3);
c(n) = sum(i=0, n+2, sum(j=i+1, n+2, sum(k=j+1, n+2, 1/((3+i)*(3+j)*(3+k)))));
for(n=0, 18, print1(b(n)*c(n), ", ")) \\ Petros Hadjicostas, Jun 12 2020
A001719
Generalized Stirling numbers.
Original entry on oeis.org
1, 30, 625, 11515, 203889, 3602088, 64720340, 1194928020, 22800117076, 450996059800, 9262414989464, 197632289814960, 4381123888865424, 100869322905986496, 2410630110159777216, 59757230054773959552, 1535299458203884231296, 40848249256425236795904
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 24; t = Range[0, nn]! CoefficientList[Series[(Log[1 - x]/(1 - x))^4/24, {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*4^k*stirling(n+4, k+4, 1)); \\ Michel Marcus, Jan 20 2016
A136124
Triangle read by rows: T(n,k) = (-1)^(n+k)*Sum_{j=1..k} s(n,j), where s(n,j) are the signed Stirling numbers of the first kind (n >= 2; 1 <= k <= n-1; s(n,j) = A008275(n,j)).
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2
T(6,3)=71 because (-1)^9*[s(6,1)+s(6,2)+s(6,3)]=-(-120+274-225)=71.
Triangle starts:
1;
2, 1;
6, 5, 1;
24, 26, 9, 1;
120, 154, 71, 14, 1;
-
A136124_row := proc(n) local k,j; `if`(n=0,1,seq((-1)^(n+1-k)*add(stirling1(n+1,j), j=1..k),k=1..n)) end: seq(print(A136124_row(r)),r=1..6); # Peter Luschny, Sep 29 2011
with(combinat): T:=proc(n, k) options operator, arrow: (-1)^(n+k)*(sum(stirling1(n,j),j=1..k)) end proc: for n from 2 to 11 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
-
nn = 10; Map[Select[#, # > 0 &] &,Range[0,nn]!CoefficientList[Series[Exp[(2 + y) Log[1/(1 - x)]], {x, 0, nn}], {x,y}]] // Flatten (* Geoffrey Critzer, Mar 13 2015 *)
A307419
Triangle of harmonic numbers T(n, k) = [t^n] Gamma(n+k+t)/Gamma(k+t) for n >= 0 and 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 11, 9, 1, 0, 50, 71, 18, 1, 0, 274, 580, 245, 30, 1, 0, 1764, 5104, 3135, 625, 45, 1, 0, 13068, 48860, 40369, 11515, 1330, 63, 1, 0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1, 0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 3, 1]
3: [0, 11, 9, 1]
4: [0, 50, 71, 18, 1]
5: [0, 274, 580, 245, 30, 1]
6: [0, 1764, 5104, 3135, 625, 45, 1]
7: [0, 13068, 48860, 40369, 11515, 1330, 63, 1]
8: [0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1]
9: [0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1]
Col: A000254, A001706, A001713, A001719, ...
-
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A307419Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+x)/GAMMA(k+x);
ser := (n, k) -> series(ogf(n,k),x,k+2); seq(coeff(ser(n,k),x,k),k=0..n) end: seq(A307419Row(n), n=0..9);
# Alternatively by the egf for column k:
A307419Col := proc(n, len) local f, egf, ser; f := (n,x) -> (log(1-x)/(x-1))^n/n!;
egf := (n,x) -> diff(f(n, x), [x$n]); ser := n -> series(egf(n, x), x, len);
seq(k!*coeff(ser(n), x, k), k=0..len-1) end:
seq(print(A307419Col(k, 10)), k=0..9); # Peter Luschny, Apr 12 2019
T := (n, k) -> add((-1)^(n-j)*binomial(j, k)*Stirling1(n, j)*k^(j-k), j = k..n):
seq(seq(T(n,k), k = 0..n), n = 0..9); # Peter Luschny, Jun 09 2022
-
f[n_, x_] := f[n, x] = D[(Log[1 - x]/(x - 1))^n/n!, {x, n}];
T[n_, k_] := (n - k)! SeriesCoefficient[f[k, x], {x, 0, n - k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 13 2019 *)
-
T(n,k):=n!*sum((binomial(k+i-1,i)*abs(stirling1(n-i,k)))/(n-i)!,i,0,n-k);
-
taylor((1-t)^(-x/(1-t)),t,0,7,x,0,7);
-
T(n,k):=coeff(taylor(gamma(n+k+t)/gamma(k+t),t,0,10),t,k);
-
T(n, k) = n!*sum(i=0, n-k, abs(stirling(n-i, k, 1))*binomial(i+k-1, i)/(n-i)!); \\ Michel Marcus, Apr 13 2019
A347989
a(n) = [x^n] (2*n)! * Sum_{k=0..2*n} binomial(x+k,k).
Original entry on oeis.org
1, 5, 71, 1665, 54649, 2310945, 119753843, 7353403057, 522289211873, 42137920501677, 3807384320667135, 380929847762489025, 41811136672902061321, 4995760464106519955705, 645541681316043216096315, 89705032647088734873129825, 13340173206548155385625683265, 2114001534402053456524492822485
Offset: 0
-
a(n) = (2*n)!*polcoef(sum(k=n, 2*n, binomial(x+k, k)), n);
-
a(n) = (2*n)!*sum(k=n, 2*n, (2*n+1-k)*abs(stirling(k, n, 1))/k!);
A193446
a(n) = n! * Sum_{k=1..n-1} H(k)*H(n-k) for n>=2, where H(n) is the n-th harmonic number.
Original entry on oeis.org
2, 18, 142, 1160, 10208, 97720, 1018008, 11507472, 140581872, 1848236544, 26041957632, 391738883328, 6268657962240, 106361504663040, 1907768564282880, 36075270482058240, 717379367864693760, 14967427450111488000, 326956068509511168000, 7463341244426167296000
Offset: 2
E.g.f.: log(1-x)^2/(1-x)^2 = 2*x^2/2! + 18*x^3/3! + 142*x^4/4! + 1160*x^5/5! + ...
Illustration of initial terms:
a(2) = 2!*(1*1) = 2;
a(3) = 3!*(1*(1+1/2) + (1+1/2)*1) = 18;
a(4) = 4!*(1*(1+1/2+1/3) + (1+1/2)*(1+1/2) + (1+1/2+1/3)*1) = 142;
a(5) = 5!*(1*(1+1/2+1/3+1/4) + (1+1/2)*(1+1/2+1/3) + (1+1/2+1/3)*(1+1/2) + (1+1/2+1/3+1/4)*1) = 1160; ...
-
a[n_] := n! * Sum[HarmonicNumber[k] * HarmonicNumber[n-k], {k, 1, n-1}]; Array[a, 20, 2] (* Amiram Eldar, Aug 18 2023 *)
-
{a(n)=if(n<2,0,n!*sum(k=1,n,sum(i=1,k,1/i)*sum(j=1,n-k,1/j)))}
-
{a(n)=if(n<0,0,n!*polcoeff(log(1-x+x*O(x^n))^2/(1-x+x*O(x^n))^2,n))}
A376634
Triangle read by rows: T(n, k) = Sum_{i=0..n-k} Stirling1(i + m, m)*binomial(n+m+1, n-k-i)*(n + m - k)!/(i + m)!, for m = 2.
Original entry on oeis.org
1, 9, 1, 71, 12, 1, 580, 119, 15, 1, 5104, 1175, 179, 18, 1, 48860, 12154, 2070, 251, 21, 1, 509004, 133938, 24574, 3325, 335, 24, 1, 5753736, 1580508, 305956, 44524, 5000, 431, 27, 1, 70290936, 19978308, 4028156, 617624, 74524, 7155, 539, 30, 1, 924118272, 270074016, 56231712, 8969148, 1139292, 117454, 9850, 659, 33, 1, 13020978816, 3894932448, 832391136, 136954044, 18083484, 1961470, 176554, 13145, 791, 36, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 9, 1;
[2] 71, 12, 1;
[3] 580, 119, 15, 1;
[4] 5104, 1175, 179, 18, 1;
[5] 48860, 12154, 2070, 251, 21, 1;
[6] 509004, 133938, 24574, 3325, 335, 24, 1;
[7] 5753736, 1580508, 305956, 44524, 5000, 431, 27, 1;
-
T:=(m,n,k)->add(Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!,i=0..n-k):m:=2:seq(seq(T(m,n,k), k=0..n),n=0..10);
Showing 1-8 of 8 results.
Comments