A163934
Triangle related to the asymptotic expansion of E(x,m=4,n).
Original entry on oeis.org
1, 6, 4, 35, 40, 10, 225, 340, 150, 20, 1624, 2940, 1750, 420, 35, 13132, 27076, 19600, 6440, 980, 56, 118124, 269136, 224490, 90720, 19110, 2016, 84, 1172700, 2894720, 2693250, 1265460, 330750, 48720, 3780, 120
Offset: 1
The first few rows of the triangle are:
1;
6, 4;
35, 40, 10;
225, 340, 150, 20;
-
with(combinat): A163934 := proc(n,m): (-1)^(n+m)* binomial(m+2, 3) *stirling1(n+2, m+2) end: seq(seq(A163934(n,m), m=1..n), n=1..8);
with(combinat): imax:=6; EA:=proc(x,m,n) local E, i; E:=0: for i from m-1 to imax+2 do E:=E + sum((-1)^(m+k+1)*binomial(k,m-1)*n^(k-m+1)* stirling1(i, k), k=m-1..i)/x^(i-m+1) od: E:= exp(-x)/x^(m)*E: return(E); end: EA(x,4,n);
# Maple programs revised by Johannes W. Meijer, Sep 11 2012
-
a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+2, 3] * StirlingS1[n+2, m+2]; Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]] (* Jean-François Alcover, Jun 01 2011, after formula *)
A001719
Generalized Stirling numbers.
Original entry on oeis.org
1, 30, 625, 11515, 203889, 3602088, 64720340, 1194928020, 22800117076, 450996059800, 9262414989464, 197632289814960, 4381123888865424, 100869322905986496, 2410630110159777216, 59757230054773959552, 1535299458203884231296, 40848249256425236795904
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 24; t = Range[0, nn]! CoefficientList[Series[(Log[1 - x]/(1 - x))^4/24, {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*4^k*stirling(n+4, k+4, 1)); \\ Michel Marcus, Jan 20 2016
A001714
Generalized Stirling numbers.
Original entry on oeis.org
1, 25, 445, 7140, 111769, 1767087, 28699460, 483004280, 8460980836, 154594537812, 2948470152264, 58696064973000, 1219007251826064, 26390216795274288, 594982297852020288, 13955257961738192448, 340154857108405040256, 8606960634143667938688
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
-
nn = 24; t = Range[0, nn]! CoefficientList[Series[Log[1 - x]^4/(24*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
A307419
Triangle of harmonic numbers T(n, k) = [t^n] Gamma(n+k+t)/Gamma(k+t) for n >= 0 and 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 11, 9, 1, 0, 50, 71, 18, 1, 0, 274, 580, 245, 30, 1, 0, 1764, 5104, 3135, 625, 45, 1, 0, 13068, 48860, 40369, 11515, 1330, 63, 1, 0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1, 0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 3, 1]
3: [0, 11, 9, 1]
4: [0, 50, 71, 18, 1]
5: [0, 274, 580, 245, 30, 1]
6: [0, 1764, 5104, 3135, 625, 45, 1]
7: [0, 13068, 48860, 40369, 11515, 1330, 63, 1]
8: [0, 109584, 509004, 537628, 203889, 33320, 2506, 84, 1]
9: [0, 1026576, 5753736, 7494416, 3602088, 775929, 81900, 4326, 108, 1]
Col: A000254, A001706, A001713, A001719, ...
-
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A307419Row := proc(n) local ogf, ser; ogf := (n, k) -> GAMMA(n+k+x)/GAMMA(k+x);
ser := (n, k) -> series(ogf(n,k),x,k+2); seq(coeff(ser(n,k),x,k),k=0..n) end: seq(A307419Row(n), n=0..9);
# Alternatively by the egf for column k:
A307419Col := proc(n, len) local f, egf, ser; f := (n,x) -> (log(1-x)/(x-1))^n/n!;
egf := (n,x) -> diff(f(n, x), [x$n]); ser := n -> series(egf(n, x), x, len);
seq(k!*coeff(ser(n), x, k), k=0..len-1) end:
seq(print(A307419Col(k, 10)), k=0..9); # Peter Luschny, Apr 12 2019
T := (n, k) -> add((-1)^(n-j)*binomial(j, k)*Stirling1(n, j)*k^(j-k), j = k..n):
seq(seq(T(n,k), k = 0..n), n = 0..9); # Peter Luschny, Jun 09 2022
-
f[n_, x_] := f[n, x] = D[(Log[1 - x]/(x - 1))^n/n!, {x, n}];
T[n_, k_] := (n - k)! SeriesCoefficient[f[k, x], {x, 0, n - k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 13 2019 *)
-
T(n,k):=n!*sum((binomial(k+i-1,i)*abs(stirling1(n-i,k)))/(n-i)!,i,0,n-k);
-
taylor((1-t)^(-x/(1-t)),t,0,7,x,0,7);
-
T(n,k):=coeff(taylor(gamma(n+k+t)/gamma(k+t),t,0,10),t,k);
-
T(n, k) = n!*sum(i=0, n-k, abs(stirling(n-i, k, 1))*binomial(i+k-1, i)/(n-i)!); \\ Michel Marcus, Apr 13 2019
Showing 1-4 of 4 results.
Comments