A163939
Triangle related to the o.g.f.s. of the right hand columns of A163934 (E(x,m=4,n)).
Original entry on oeis.org
1, 6, 4, 35, 60, 10, 225, 690, 325, 20, 1624, 7588, 6762, 1316, 35, 13132, 85288, 120358, 46928, 4508, 56, 118124, 1004736, 2028660, 1298860, 265365, 13896, 84, 1172700, 12529400, 33896400, 31862400, 11077255, 1313610, 39915, 120
Offset: 1
The first few W4(z,p) polynomials are:
W4(z,p=1) = 1/(1-z)^4
W4(z,p=2) = (6+4*z)/(1-z)^6
W4(z,p=3) = (35+60*z+10*z^2)/(1-z)^8
W4(z,p=4) = (225+690*z+325*z^2+20*z^3)/(1-z)^10
A000399 equals the first left hand column.
A000292 equals the first right hand column.
-
with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k+2)*(m-k+1)*(m-k)/3!)*binomial(2*n+2, k)*stirling1(m+n-k+1, m-k+2), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 27 2012
-
Table[Sum[(-1)^(n + k + 1)*Binomial[m - k + 2, 3]*Binomial[2*n + 2, k]*StirlingS1[m + n - k + 1, m - k + 2], {k, 0, m - 1}], {n, 1, 50}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
-
for(n=1,10, for(m=1,n, print1(sum(k=0, m-1, (-1)^(n+k+1)* binomial(m-k+2,3)* binomial(2*n+2,k)*stirling(m+n-k+1,m-k+2,1)), ", "))) \\ G. C. Greubel, Aug 13 2017
A163935
Third right hand column of triangle A163934.
Original entry on oeis.org
35, 340, 1750, 6440, 19110, 48720, 110880, 231000, 448305, 820820, 1431430, 2395120, 3867500, 6054720, 9224880, 13721040, 19975935, 28528500, 40042310, 55326040, 75356050, 101301200, 134550000, 176740200, 229790925, 295937460
Offset: 3
Equals the third right hand column of triangle
A163934.
-
nmax:=28; mmax:=nmax: with(combinat, stirling1): for n from 1 to nmax do for m from 1 to n do a(n,m):=(-1)^(n+m)*m*(m+1)*(m+2)*stirling1(n+2,m+2)/3! od; od: seq(a(n,n-2),n=3..nmax);
-
CoefficientList[Series[x^3 (35 + 60 x + 10 x^2)/(1 - x)^8, {x, 0, 50}], x] (* G. C. Greubel, Aug 08 2017 *)
-
x='x+O('x^50); Vec(x^3*(35 + 60*x + 10*x^2)/(1-x)^8) \\ G. C. Greubel, Aug 08 2017
A130534
Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
n=0: 1
n=1: 1 1
n=2: 2 3 1
n=3: 6 11 6 1
n=4: 24 50 35 10 1
n=5: 120 274 225 85 15 1
n=6: 720 1764 1624 735 175 21 1
n=7: 5040 13068 13132 6769 1960 322 28 1
n=8: 40320 109584 118124 67284 22449 4536 546 36 1
n=9: 362880 1026576 1172700 723680 269325 63273 9450 870 45 1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55 1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 1 1 ||0 1 ||0 1 | | 1 1 |
| 2 2 1 ||0 1 1 ||0 0 1 |... = | 2 3 1 |
| 6 6 3 1 ||0 2 2 1 ||0 0 1 1 | | 6 11 6 1 |
|24 24 12 4 1||0 6 6 3 1||0 0 2 2 1| |24 50 35 10 1|
|... ||... ||... | |... |
(End)
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
- Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 5, pp. 227-251. [From _Johannes W. Meijer_, Oct 07 2009]
- A. Chervov, Decomplexification of the Capelli identities and holomorphic factorization, arxiv 1203.5759 [math.QA], Mar 2012. [_Tom Copeland_, Apr 10 2014]
- FindStat - Combinatorial Statistic Finder, The number of saliances of the permutation, The number of cycles in the cycle decomposition of a permutation.
- Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009.
- S. Joni, G. Rota, and B. Sagan, From Sets to Functions: Three Elementary Examples, Discrete Mathematics, vol. 37, no. 2-3, pp. 193-202, 1981. [_Tom Copeland_, Apr 05 2014]
- Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Preprint, arXiv:1610.02965 [math.CO], 2016.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Lucas Sá and Antonio M. García-García, The Wishart-Sachdev-Ye-Kitaev model: Q-Laguerre spectral density and quantum chaos, arXiv:2104.07647 [hep-th], 2021.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Dennis Walsh, A short note on unsigned Stirling numbers
See
A008275, which is the main entry for these numbers;
A094638 (reversed rows).
The asymptotic expansions lead to
A000142 (n=1),
A000142(n=2; minus a(0)),
A001710 (n=3),
A001715 (n=4),
A001720 (n=5),
A001725 (n=6),
A001730 (n=7),
A049388 (n=8),
A049389 (n=9),
A049398 (n=10),
A051431 (n=11),
A008279 and
A094587.
(End)
-
a130534 n k = a130534_tabl !! n !! k
a130534_row n = a130534_tabl !! n
a130534_tabl = map (map abs) a008275_tabl
-- Reinhard Zumkeller, Mar 18 2013
-
with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
-
Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
rows = 10;
t = Range[0, rows]!;
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A001498
Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0
The triangle a(n, k), n >= 0, k = 0..n, begins:
1
1 1
1 3 3
1 6 15 15
1 10 45 105 105
1 15 105 420 945 945
1 21 210 1260 4725 10395 10395
1 28 378 3150 17325 62370 135135 135135
1 36 630 6930 51975 270270 945945 2027025 2027025
1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
...
And the first few Bessel polynomials are:
y_0(x) = 1,
y_1(x) = x + 1,
y_2(x) = 3*x^2 + 3*x + 1,
y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Alexander Alldridge, Joachim Hilgert, and Martin R. Zirnbauer, Chevalley's restriction theorem for reductive symmetric superpairs, arXiv:0812.3530 [math.RT], 2008-2009; J. Alg. 323 (4) (2010) 1159-1185 doi:10.1016/j.jalgebra.2009.11.014, Remark 3.17.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Juan Antonio Barcelo and Anthony Carbery, On the magnitudes of compact sets in Euclidean spaces, arXiv preprint arXiv:1507.02502 [math.MG], 2015.
- François Bergeron, Philippe Flajolet, and Bruno Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
- Alexander W. Boldyreff, Decomposition of Rational Fractions into Partial Fractions, Nat. Math. Mag. 17 (6) (1943), 261-267; coefficients (m)N(r).
- Alexander Burstein and Toufik Mansour, Words restricted by patterns with at most 2 distinct letters, arXiv:math/0110056 [math.CO], 2001.
- Roudy El Haddad, Repeated Integration and Explicit Formula for the n-th Integral of x^m*(ln x)^m', arXiv:2102.11723 [math.GM], 2021.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 9.
- Emil Grosswald, Bessel Polynomials: Recurrence Relations, Lecture Notes Math. vol. 698, 1978, p. 18.
- Cameron Jakub and Mihai Nica, Depth Degeneracy in Neural Networks: Vanishing Angles in Fully Connected ReLU Networks on Initialization, arXiv:2302.09712 [stat.ML], 2023.
- Taekyun Kim, and Dae San Kim, Identities involving Bessel polynomials arising from linear differential equations, arXiv:1602.04106 [math.NT], 2016.
- H. L. Krall and Orrin Frink, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First ten rows.
- B. Leclerc, Powers of staircase Schur functions and symmetric analogues of Bessel polynomials, Discrete Math., 153 (1996), 213-227.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Shi-Mei Ma, Toufik Mansour, Jean Yeh, and Yeong-Nan Yeh, Normal ordered grammars, arXiv:2404.15119 [math.CO], 2024. See p. 11.
- Guillermo Navas-Palencia, On the computation of the cumulative distribution function of the Normal Inverse Gaussian distribution, arXiv:2502.16015 [math.NA], 2025. See p. 25.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- John Riordan, Notes to N. J. A. Sloane, Jul. 1968
- Florian Stober, Average case considerations for MergeInsertion, Master's Thesis, University of Stuttgart, Institute of Formal Methods in Computer Science, 2018.
- Florian Stober and Armin Weiß, On the Average Case of MergeInsertion, arXiv:1905.09656 [cs.DS], 2019.
- Laszlo A. Székely, Pál L. Erdős, and M. A. Steel, The combinatorics of evolutionary trees, Séminaire Lotharingien de Combinatoire, B28e (1992), 15 pp.
- Juan G. Triana, Bessel polynomials by context-free grammars (Polinomios de Bessel mediante gramáticas independientes del contexto), Bistua, Univ. de Pamplona (Colombia, 2024) Vol 22, No. 2. See p. 3.
- Jonas Wahl, Traces on diagram algebras II: Centralizer algebras of easy groups and new variations of the Young graph, arXiv:2009.08181 [math.RT], 2020.
- Eric Weisstein's World of Mathematics, Modified Spherical Bessel Function of the Second Kind
- Index entries for sequences related to Bessel functions or polynomials
-
a001498 n k = a001498_tabl !! n !! k
a001498_row n = a001498_tabl !! n
a001498_tabl = map reverse a001497_tabl
-- Reinhard Zumkeller, Jul 11 2014
-
/* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
-
Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
# Alternative:
T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 02 2023
-
max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
-
{T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
-
A001497_ser(N,t='t) = {
my(x='x+O('x^(N+2)));
serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
};
concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A163932
Triangle related to the asymptotic expansion of E(x,m=3,n).
Original entry on oeis.org
1, 3, 3, 11, 18, 6, 50, 105, 60, 10, 274, 675, 510, 150, 15, 1764, 4872, 4410, 1750, 315, 21, 13068, 39396, 40614, 19600, 4830, 588, 28, 109584, 354372, 403704, 224490, 68040, 11466, 1008, 36, 1026576, 3518100, 4342080, 2693250, 949095, 198450
Offset: 1
The first few rows of the triangle are:
[1]
[3, 3]
[11, 18, 6]
[50, 105, 60, 10]
-
nmax:=8; with(combinat): for n1 from 1 to nmax do for m from 1 to n1 do a(n1, m) := (-1)^(n1+m)*binomial(m+1, 2)*stirling1(n1+1, m+1) od: od: seq(seq(a(n1,m), m=1..n1), n1=1..nmax);
# End program 1
with(combinat): imax:=6; EA:=proc(x, m, n) local E, i; E := 0: for i from m-1 to imax+1 do E := E + sum((-1)^(m+k1+1)*binomial(k1, m-1)*n^(k1-m+1)* stirling1(i, k1), k1=m-1..i)/x^(i-m+1) od: E := exp(-x)/x^(m)*E: return(E); end: EA(x, 3, n);
# End program 2
-
a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+1, 2] * StirlingS1[n+1, m+1]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 42]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
for(n=1,10, for(m=1,n, print1((-1)^(n+m)*binomial(m+1,2) *stirling(n+1,m+1,1), ", "))) \\ G. C. Greubel, Aug 08 2017
A001713
Generalized Stirling numbers.
Original entry on oeis.org
1, 18, 245, 3135, 40369, 537628, 7494416, 109911300, 1698920916, 27679825272, 474957547272, 8572072384512, 162478082312064, 3229079010579072, 67177961946534528, 1460629706845766400, 33139181950164806400, 783398920650352012800, 19268391564147377318400
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
-
nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*3^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 20 2016
-
b(n) = prod(r=0, n+2, r+3);
c(n) = sum(i=0, n+2, sum(j=i+1, n+2, sum(k=j+1, n+2, 1/((3+i)*(3+j)*(3+k)))));
for(n=0, 18, print1(b(n)*c(n), ", ")) \\ Petros Hadjicostas, Jun 12 2020
A001707
Generalized Stirling numbers.
Original entry on oeis.org
1, 14, 155, 1665, 18424, 214676, 2655764, 34967140, 489896616, 7292774280, 115119818736, 1922666722704, 33896996544384, 629429693586048, 12283618766690304, 251426391808144896, 5387217520095244800, 120615281647055884800, 2817014230489985049600
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*2^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 01 2023
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
A001718
Generalized Stirling numbers.
Original entry on oeis.org
1, 22, 355, 5265, 77224, 1155420, 17893196, 288843260, 4876196776, 86194186584, 1595481972864, 30908820004608, 626110382381184, 13246845128678016, 292374329134060800, 6723367631258860800, 160883166944083161600, 4001062259532015244800
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
-
nn = 20; t = Range[0, nn]! CoefficientList[Series[(1 - 15*Log[1 - x] + 37*Log[1 - x]^2 - 20*Log[1 - x]^3)/(1 - x)^7, {x, 0, nn}], x] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*4^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 20 2016
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
A001723
Generalized Stirling numbers.
Original entry on oeis.org
1, 26, 485, 8175, 134449, 2231012, 37972304, 668566300, 12230426076, 232959299496, 4623952866312, 95644160132976, 2060772784375824, 46219209678691200, 1078100893671811200, 26129183717351462400, 657337657573760947200, 17147815411007234188800
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Sum[(-1)^(n + k)*Binomial[k + 3, 3]*5^k*StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Showing 1-10 of 11 results.
Comments