cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A163939 Triangle related to the o.g.f.s. of the right hand columns of A163934 (E(x,m=4,n)).

Original entry on oeis.org

1, 6, 4, 35, 60, 10, 225, 690, 325, 20, 1624, 7588, 6762, 1316, 35, 13132, 85288, 120358, 46928, 4508, 56, 118124, 1004736, 2028660, 1298860, 265365, 13896, 84, 1172700, 12529400, 33896400, 31862400, 11077255, 1313610, 39915, 120
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The asymptotic expansions of the higher order exponential integral E(x,m=4,n) lead to triangle A163934, see A163931 for information on the E(x,m,n). The o.g.f.s. of the right hand columns of triangle A163934 have a nice structure Gf(p) = W4(z,p)/(1-z)^(2*p+2) with p = 1 for the first right hand column, p = 2 for the second right hand column, etc.. The coefficients of the W4(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. The row sums of this triangle lead to A000457, see A163936 for more information.

Examples

			The first few W4(z,p) polynomials are:
W4(z,p=1) = 1/(1-z)^4
W4(z,p=2) = (6+4*z)/(1-z)^6
W4(z,p=3) = (35+60*z+10*z^2)/(1-z)^8
W4(z,p=4) = (225+690*z+325*z^2+20*z^3)/(1-z)^10
		

Crossrefs

Row sums equal A000457.
A000399 equals the first left hand column.
A000292 equals the first right hand column.
Cf. A163931 (E(x,m,n)) and A163934.
Cf. A163936 (E(x,m=1,n)), A163937 (E(x,m=2,n)) and A163938 (E(x,m=3,n)).

Programs

  • Maple
    with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k+2)*(m-k+1)*(m-k)/3!)*binomial(2*n+2, k)*stirling1(m+n-k+1, m-k+2), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 27 2012
  • Mathematica
    Table[Sum[(-1)^(n + k + 1)*Binomial[m - k + 2, 3]*Binomial[2*n + 2, k]*StirlingS1[m + n - k + 1, m - k + 2], {k, 0, m - 1}], {n, 1, 50}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(sum(k=0, m-1, (-1)^(n+k+1)* binomial(m-k+2,3)* binomial(2*n+2,k)*stirling(m+n-k+1,m-k+2,1)), ", "))) \\ G. C. Greubel, Aug 13 2017

Formula

a(n,m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(m-k+2,3)* binomial(2*n+2,k)*stirling1(m+n-k+1,m-k+2), for 1<= m <=n.

A163935 Third right hand column of triangle A163934.

Original entry on oeis.org

35, 340, 1750, 6440, 19110, 48720, 110880, 231000, 448305, 820820, 1431430, 2395120, 3867500, 6054720, 9224880, 13721040, 19975935, 28528500, 40042310, 55326040, 75356050, 101301200, 134550000, 176740200, 229790925, 295937460
Offset: 3

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Crossrefs

Cf. A048994 (Stirling1).
Equals the third right hand column of triangle A163934.
A000292 and A027777 are the first and second right hand columns.

Programs

  • Maple
    nmax:=28; mmax:=nmax: with(combinat, stirling1): for n from 1 to nmax do for m from 1 to n do a(n,m):=(-1)^(n+m)*m*(m+1)*(m+2)*stirling1(n+2,m+2)/3! od; od: seq(a(n,n-2),n=3..nmax);
  • Mathematica
    CoefficientList[Series[x^3 (35 + 60 x + 10 x^2)/(1 - x)^8, {x, 0, 50}], x] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    x='x+O('x^50); Vec(x^3*(35 + 60*x + 10*x^2)/(1-x)^8) \\ G. C. Greubel, Aug 08 2017

Formula

a(n) = (n-2)*(n-1)*(n)*stirling1(n+2,n)/3!.
G.f.: x^3*(35 + 10*x^2 + 60*x)/(1 - x)^8.

A130534 Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 09 2007

Keywords

Comments

This triangle is an unsigned version of the triangle of Stirling numbers of the first kind, A008275, which is the main entry for these numbers. - N. J. A. Sloane, Jan 25 2011
Or, triangle T(n,k), 0 <= k <= n, read by rows given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Reversal of A094638.
Equals A132393*A007318, as infinite lower triangular matrices. - Philippe Deléham, Nov 13 2007
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the exponential integrals E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + n*(n+1)/x^2 - n*(n+1)*(n+2)/x^3 + ...), see Abramowitz and Stegun. This formula follows from the general formula for the asymptotic expansion, see A163932. We rewrite E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) and observe that the T(n,m) are the polynomials coefficients in the denominators. Looking at the a(n,m) formula of A028421, A163932 and A163934, and shifting the offset given above to 1, we can write T(n-1,m-1) = a(n,m) = (-1)^(n+m)*Stirling1(n,m), see the Maple program.
The asymptotic expansion leads for values of n from one to eleven to known sequences, see the cross-references. With these sequences one can form the triangles A008279 (right-hand columns) and A094587 (left-hand columns).
See A163936 for information about the o.g.f.s. of the right-hand columns of this triangle.
(End)
The number of elements greater than i to the left of i in a permutation gives the i-th element of the inversion vector. (Skiena-Pemmaraju 2003, p. 69.) T(n,k) is the number of n-permutations that have exactly k 0's in their inversion vector. See evidence in Mathematica code below. - Geoffrey Critzer, May 07 2010
T(n,k) counts the rooted trees with k+1 trunks in forests of "naturally grown" rooted trees with n+2 nodes. This corresponds to sums of coefficients of iterated derivatives representing vectors, Lie derivatives, or infinitesimal generators for flow fields and formal group laws. Cf. links in A139605. - Tom Copeland, Mar 23 2014
A refinement is A036039. - Tom Copeland, Mar 30 2014
From Tom Copeland, Apr 05 2014: (Start)
With initial n=1 and row polynomials of T as p(n,x)=x(x+1)...(x+n-1), the powers of x correspond to the number of trunks of the rooted trees of the "naturally-grown" forest referred to above. With each trunk allowed m colors, p(n,m) gives the number of such non-plane colored trees for the forest with each tree having n+1 vertices.
p(2,m) = m + m^2 = A002378(m) = 2*A000217(m) = 2*(first subdiag of |A238363|).
p(3,m) = 2m + 3m^2 + m^3 = A007531(m+2) = 3*A007290(m+2) = 3*(second subdiag A238363).
p(4,m) = 6m + 11m^2 + 6m^3 + m^4 = A052762(m+3) = 4*A033487(m) = 4*(third subdiag).
From the Joni et al. link, p(n,m) also represents the disposition of n distinguishable flags on m distinguishable flagpoles.
The chromatic polynomial for the complete graph K_n is the falling factorial, which encodes the colorings of the n vertices of K_n and gives a shifted version of p(n,m).
E.g.f. for the row polynomials: (1-y)^(-x).
(End)
A relation to derivatives of the determinant |V(n)| of the n X n Vandermonde matrix V(n) in the indeterminates c(1) thru c(n):
|V(n)| = Product_{1<=jTom Copeland, Apr 10 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A094587 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well defined). See the Example section. (End)
For the relation of this rising factorial to the moments of Viennot's Laguerre stories, see the Hetyei link, p. 4. - Tom Copeland, Oct 01 2015
Can also be seen as the Bell transform of n! without column 0 (and shifted enumeration). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle  T(n,k) begins:
n\k         0        1        2       3       4      5      6     7    8  9 10
n=0:        1
n=1:        1        1
n=2:        2        3        1
n=3:        6       11        6       1
n=4:       24       50       35      10       1
n=5:      120      274      225      85      15      1
n=6:      720     1764     1624     735     175     21      1
n=7:     5040    13068    13132    6769    1960    322     28     1
n=8:    40320   109584   118124   67284   22449   4536    546    36    1
n=9:   362880  1026576  1172700  723680  269325  63273   9450   870   45  1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55  1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1          \/1        \/1        \      / 1           \
  | 1  1       ||0 1      ||0 1      |      | 1  1        |
  | 2  2  1    ||0 1 1    ||0 0 1    |... = | 2  3  1     |
  | 6  6  3 1  ||0 2 2 1  ||0 0 1 1  |      | 6 11  6  1  |
  |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1|      |24 50 35 10 1|
  |...         ||...      ||...      |      |...          |
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]

Crossrefs

See A008275, which is the main entry for these numbers; A094638 (reversed rows).
From Johannes W. Meijer, Oct 07 2009: (Start)
Row sums equal A000142.
The asymptotic expansions lead to A000142 (n=1), A000142(n=2; minus a(0)), A001710 (n=3), A001715 (n=4), A001720 (n=5), A001725 (n=6), A001730 (n=7), A049388 (n=8), A049389 (n=9), A049398 (n=10), A051431 (n=11), A008279 and A094587.
Cf. A163931 (E(x,m,n)), A028421 (m=2), A163932 (m=3), A163934 (m=4), A163936.
(End)
Cf. A136662.

Programs

  • Haskell
    a130534 n k = a130534_tabl !! n !! k
    a130534_row n = a130534_tabl !! n
    a130534_tabl = map (map abs) a008275_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
    BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
    rows = 10;
    t = Range[0, rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

T(0,0) = 1, T(n,k) = 0 if k > n or if n < 0, T(n,k) = T(n-1,k-1) + n*T(n-1,k). T(n,0) = n! = A000142(n). T(2*n,n) = A129505(n+1). Sum_{k=0..n} T(n,k) = (n+1)! = A000142(n+1). Sum_{k=0..n} T(n,k)^2 = A047796(n+1). T(n,k) = |Stirling1(n+1,k+1)|, see A008275. (x+1)(x+2)...(x+n) = Sum_{k=0..n} T(n,k)*x^k. [Corrected by Arie Bos, Jul 11 2008]
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. - Philippe Deléham, Nov 13 2007
For k=1..n, let A={a_1,a_2,...,a_k} denote a size-k subset of {1,2,...,n}. Then T(n,n-k) = Sum(Product_{i=1..k} a_i) where the sum is over all subsets A. For example, T(4,1)=50 since 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 = 50. - Dennis P. Walsh, Jan 25 2011
The preceding formula means T(n,k) = sigma_{n-k}(1,2,3,..,n) with the (n-k)-th elementary symmetric function sigma with the indeterminates chosen as 1,2,...,n. See the Oct 24 2011 comment in A094638 with sigma called there a. - Wolfdieter Lang, Feb 06 2013
From Gary W. Adamson, Jul 08 2011: (Start)
n-th row of the triangle = top row of M^n, where M is the production matrix:
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
... (End)
Exponential Riordan array [1/(1 - x), log(1/(1 - x))]. Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (n + 1)!/(n + 1 - i)!*T(n-i,k). - Peter Bala, Jul 21 2014

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A028421 Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0

Views

Author

Peter Wiggen (wiggen(AT)math.psu.edu)

Keywords

Comments

Previous name was: Number triangle f(n, k) from n-th differences of the sequence {1/m^2}{m >= 1}, for n >= 0; the n-th difference sequence is {(-1)^n*n!*P(n, m)/D(n, m)^2}{m >= 1} where P(n, x) is the row polynomial P(n, x) = Sum_{k=0..n} f(n,k)*x^k and D(n, x) = x*(x+1)*...*(x+n).
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the general formula of the asymptotic expansion of E(x,m,n) can be found in A163932.
We used the general formula and the asymptotic expansion of E(x,m=1,n), see A130534, to determine that E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2 + 6*n + 3*n^2)/x^2 - (6 + 22*n + 18*n^2 + 4*n^3)/x^3 + ...) which can be verified with the EA(x,2,n) formula, see A163932. The coefficients in the denominators of this expansion lead to the sequence given above.
The asymptotic expansion of E(x,m=2,n) leads for n from one to ten to known sequences, see the cross-references. With these sequences one can form the triangles A165674 (left hand columns) and A093905 (right hand columns).
(End)
For connections to an operator relation between log(x) and x^n(d/dx)^n, see A238363. - Tom Copeland, Feb 28 2014
From Wolfdieter Lang, Nov 25 2018: (Start)
The signed triangle t(n, k) := (-1)^{n-k}*f(n, k) gives (n+1)*N(-1;n,x) = Sum_{k=0..n} t(n, k)*x^k, where N(-1;n,x) are the Narumi polynomials with parameter a = -1 (see the Weisstein link).
The members of the n-th difference sequence of the sequence {1/m^2}_{m>=1} mentioned above satisfies the recurrence delta(n, m) = delta(n-1, m+1) - delta(n-1, m), for n >= 1, m >= 1, with input delta(0, m) = 1/m^2. The solution is delta(n, m) = (n+1)!*N(-1;n,-m)/risefac(m, n+1)^2, with Narumi polynomials N(-1;n,x) and the rising factorials risefac(x, n+1) = D(n, x) = x*(x+1)*...*(x+n).
The above mentioned row polynomials P satisfy P(n, x) = (-1)^n*(n + 1)*N(-1;n,-x), for n >= 0. The recurrence is P(n, x) = (-x^2*P(n-1, x+1) + (n+x)^2*P(n-1, x))/n, for n >= 1, and P(0, x) = 1. (End)
The triangle is the exponential Riordan square (cf. A321620) of -log(1-x) with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
n\k       0        1        2        3        4       5       6      7     8   9 10
------------------------------------------------------------------------------------
0:        1
1:        1        2
2:        2        6        3
3:        6       22       18        4
4:       24      100      105       40        5
5:      120      548      675      340       75       6
6:      720     3528     4872     2940      875     126       7
7:     5040    26136    39396    27076     9800    1932     196      8
8:    40320   219168   354372   269136   112245   27216    3822    288     9
9:   362880  2053152  3518100  2894720  1346625  379638   66150   6960   405  10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
		

Crossrefs

Row sums give A000254(n+1), n >= 0.
Cf. A132393 (unsigned Stirling1), A061356, A139526, A321620.
From Johannes W. Meijer, Oct 07 2009: (Start)
A000142, A052517, 3*A000399, 5*A000482 are the first four left hand columns; A000027, A002411 are the first two right hand columns.
The asymptotic expansion of E(x,m=2,n) leads to A000254 (n=1), A001705 (n=2), A001711 (n=3), A001716 (n=4), A001721 (n=5), A051524 (n=6), A051545 (n=7), A051560 (n=8), A051562 (n=9), A051564 (n=10), A093905 (triangle) and A165674 (triangle).
Cf. A163931 (E(x,m,n)), A130534 (m=1), A163932 (m=3), A163934 (m=4), A074246 (E(x,m=2,n+1)). (End)

Programs

  • Maple
    A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
    seq(seq(A028421(n,k), k=0..n), n=0..8);
    # Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
    egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
    ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
    seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
  • Mathematica
    f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019

Formula

E.g.f.: d/dt(-log(1-t)/(1-t)^x). - Vladeta Jovovic, Oct 12 2003
The e.g.f. with offset 1: y = x + (1 + 2*t)*x^2/2! + (2 + 6*t + 3*t^2)*x^3/3! + ... has series reversion with respect to x equal to y - (1 + 2*t)*y^2/2! + (1 + 3*t)^2*y^3/3! - (1 + 4*t)^3*y^4/4! + .... This is an e.g.f. for a signed version of A139526. - Peter Bala, Jul 18 2013
Recurrence: T(n, k) = 0 if n < k; if k = 0 then T(0, 0) = 1 and T(n, 0) = n * T(n-1, 0) for n >= 1, otherwise T(n, k) = n*T(n-1, k) + ((k+1)/k)*T(n-1, k-1). From the unsigned Stirling1 recurrence. - Wolfdieter Lang, Nov 25 2018

Extensions

Edited by Wolfdieter Lang, Nov 23 2018

A163932 Triangle related to the asymptotic expansion of E(x,m=3,n).

Original entry on oeis.org

1, 3, 3, 11, 18, 6, 50, 105, 60, 10, 274, 675, 510, 150, 15, 1764, 4872, 4410, 1750, 315, 21, 13068, 39396, 40614, 19600, 4830, 588, 28, 109584, 354372, 403704, 224490, 68040, 11466, 1008, 36, 1026576, 3518100, 4342080, 2693250, 949095, 198450
Offset: 1

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Aug 13 2009, Oct 22 2009

Keywords

Comments

The higher order exponential integrals E(x,m,n) are defined in A163931. The general formula for the asymptotic expansion E(x,m,n) ~ E(x,m-1,n+1)/x - n*E(x,m-1,n+2)/x^2 + n*(n+1) * E(x,m-1,n+3)/x^3 - n*(n+1)*(n+2)*E(x,m-1,n+4)/x^4 + ...., m >= 1 and n >= 1.
We used this formula and the asymptotic expansion of E(x,m=2,n), see A028421, to determine that E (x,m=3,n) ~ (exp(-x)/x^3)*(1 - (3+3*n)/x + (11+18*n+6*n^2)/x^2 - (50+105*n+ 60*n^2+ 10*n^3)/x^3 + .. ). This formula leads to the triangle coefficients given above.
The asymptotic expansion leads for the values of n from one to ten to known sequences, see the cross-references.
The numerators of the o.g.f.s. of the right hand columns of this triangle lead for z=1 to A001879, see A163938 for more information.
The first Maple program generates the sequence given above and the second program generates the asymptotic expansion of E(x,m=3,n).

Examples

			The first few rows of the triangle are:
[1]
[3, 3]
[11, 18, 6]
[50, 105, 60, 10]
		

Crossrefs

Cf. A163931 (E(x,m,n)) and A163938.
Cf. A048994 (Stirling1), A000399 (row sums).
A000254, 3*A000399, 6*A000454, 10*A000482, 15*A001233, 21*A001234 equal the first six left hand columns.
A000217, A006011 and A163933 equal the first three right hand columns.
The asymptotic expansion leads to A000399 (n=1), A001706 (n=2), A001712 (n=3), A001717 (n=4), A001722 (n=5), A051525 (n=6), A051546 (n=7), A051561 (n=8), A051563 (n=9) and A051565 (n=10).
Cf. A130534 (m=1), A028421 (m=2) and A163934 (m=4).

Programs

  • Maple
    nmax:=8; with(combinat): for n1 from 1 to nmax do for m from 1 to n1 do a(n1, m) := (-1)^(n1+m)*binomial(m+1, 2)*stirling1(n1+1, m+1) od: od: seq(seq(a(n1,m), m=1..n1), n1=1..nmax);
    # End program 1
    with(combinat): imax:=6; EA:=proc(x, m, n) local E, i; E := 0: for i from m-1 to imax+1 do E := E + sum((-1)^(m+k1+1)*binomial(k1, m-1)*n^(k1-m+1)* stirling1(i, k1), k1=m-1..i)/x^(i-m+1) od: E := exp(-x)/x^(m)*E: return(E); end: EA(x, 3, n);
    # End program 2
  • Mathematica
    a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+1, 2] * StirlingS1[n+1, m+1]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 42]] (* Jean-François Alcover, Jun 01 2011, after formula *)
  • PARI
    for(n=1,10, for(m=1,n, print1((-1)^(n+m)*binomial(m+1,2) *stirling(n+1,m+1,1), ", "))) \\ G. C. Greubel, Aug 08 2017

Formula

a(n,m) = (-1)^(n+m)*binomial(m+1,2)*stirling1(n+1,m+1) for n >= 1 and 1 <= m <= n.

Extensions

Edited by Johannes W. Meijer, Sep 22 2012

A001713 Generalized Stirling numbers.

Original entry on oeis.org

1, 18, 245, 3135, 40369, 537628, 7494416, 109911300, 1698920916, 27679825272, 474957547272, 8572072384512, 162478082312064, 3229079010579072, 67177961946534528, 1460629706845766400, 33139181950164806400, 783398920650352012800, 19268391564147377318400
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=3) ~ exp(-x)/x^4*(1 - 18/x + 245/x^2 - 3135/x^3 + 40369/x^4 - 537628/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009
From Petros Hadjicostas, Jun 12 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation.
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0.
As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m.
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m) for n, m >= 0.
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current sequence, a(n) = R_{n+3}^3(a=-3, b=-1) for n >= 0. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*3^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 20 2016
    
  • PARI
    b(n) = prod(r=0, n+2, r+3);
    c(n) = sum(i=0, n+2, sum(j=i+1, n+2, sum(k=j+1, n+2, 1/((3+i)*(3+j)*(3+k)))));
    for(n=0, 18, print1(b(n)*c(n), ", ")) \\ Petros Hadjicostas, Jun 12 2020

Formula

E.g.f.: Sum_{n>=0} a(n)*x^(n+3)/(n+3)! = (log(1 - x)/(x - 1))^3/6. - Vladeta Jovovic, May 05 2003 [Edited by Petros Hadjicostas, Jun 13 2020]
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(k+3, 3) * 3^k * Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,3)| for n >= 3. - Milan Janjic, Dec 21 2008
From Petros Hadjicostas, Jun 12 2020: (Start)
a(n) = [x^3] Product_{r=0}^{n+2} (x + 3 + r) = (Product_{r=0}^{n+2} (r+3)) * Sum_{0 <= i < j < k <= n+2} 1/((3+i)*(3+j)*(3+k)).
Since a(n) = R_{n+3}^3(a=-3, b=-1), A001712(n) = R_{n+2}^2(a=-3,b=-1), and A001711(n) = R_{n+1}^1(a=-3, b=-1), the equation R_{n+3}^3(a=-3,b=-1) = R_{n+2}^2(a=-3,b=-1) + (n+5)*R_{n+2}^3(a=-3,b=-1) implies the following:
(i) a(n) = A001712(n) + (n+5)*a(n-1) for n >= 1.
(ii) a(n) = A001711(n) + (2*n+9)*a(n-1) - (n+4)^2*a(n-2) for n >= 2.
(iii) a(n) = (n+2)!/2 + 3*(n+4)*a(n-1) - (3*n^2+21*n+37)*a(n-2) + (n+3)^3*a(n-3) for n >= 3.
(iv) a(n) = 2*(2*n+7)*a(n-1) - (6*n^2+36*n+55)*a(n-2) + (2*n^2+10*n+13)*(2*n+5)*a(n-3) - (n+2)^4*a(n-4) for n >= 4. (End)

Extensions

More terms from Vladeta Jovovic, May 05 2003

A001707 Generalized Stirling numbers.

Original entry on oeis.org

1, 14, 155, 1665, 18424, 214676, 2655764, 34967140, 489896616, 7292774280, 115119818736, 1922666722704, 33896996544384, 629429693586048, 12283618766690304, 251426391808144896, 5387217520095244800, 120615281647055884800, 2817014230489985049600
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=2) ~ exp(-x)/x^4*(1 - 14/x + 155/x^2 - 1665/x^3 + 18424/x^4 - 214676/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*2^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 01 2023

Formula

E.g.f.: - log ( 1 - x )^3 / 6 ( x - 1 )^2.
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+3, 3)*2^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-3) = |f(n,3,2)|, for n>=3. [From Milan Janjic, Dec 21 2008]

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A001718 Generalized Stirling numbers.

Original entry on oeis.org

1, 22, 355, 5265, 77224, 1155420, 17893196, 288843260, 4876196776, 86194186584, 1595481972864, 30908820004608, 626110382381184, 13246845128678016, 292374329134060800, 6723367631258860800, 160883166944083161600, 4001062259532015244800
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=4) ~ exp(-x)/x^4*(1 - 22/x + 355/x^2 - 5265/x^3 + 77224/x^4 - 1155420/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009
From Petros Hadjicostas, Jun 26 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation.
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0.
As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m.
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current sequence, a(n) = R_{n+3}^3(a=-4, b=-1) for n >= 0. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 20; t = Range[0, nn]! CoefficientList[Series[(1 - 15*Log[1 - x] + 37*Log[1 - x]^2 - 20*Log[1 - x]^3)/(1 - x)^7, {x, 0, nn}], x] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*4^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 20 2016

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(k+3, 3) * 4^k * Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (1 - 15*log(1 - x) + 37*log(1 - x)^2 - 20*log(1 - x)^3)/(1 - x)^7. - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,4)| for n >= 3. - Milan Janjic, Dec 21 2008
From Petros Hadjicostas, Jun 26 2020: (Start)
a(n) = [x^3] Product_{r=0..n+2} (x + 4 + r) = (Product_{r=0..n+2} (4 + r)) * Sum_{0 <= i < j < k <= n+2} 1/((4 + i)*(4 + j)*(4 + k)).
E.g.f.: Sum_{n >= 0} a(n)/(n+3)!*x^(n+3) = -(log(1 - x))^3/(6*(1 - x)^4).
Since a(n) = R_{n+3}^3(a=-4, b=-1) and R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b), we conclude that:
(i) a(n) = A001717(n) + (n+6)*a(n-1) for n >= 1;
(ii) a(n) = A001716(n) + (2*n+11)*a(n-1) - (n+5)^2*a(n-2) for n >= 2.
(iii) a(n) = (n+3)!/6 + 3*(n+5)*a(n-1) - (3*n^2+27*n+61)*a(n-2) + (n+4)^3*a(n-3) for n >= 3.
(iv) a(n) = 2*(2*n+9)*a(n-1) - (6*n^2+48*n+97)*a(n-2) + (2*n+7)*(2*n^2+14*n+25)*a(n-3) - (n+3)^4*a(n-4) = 0 for n >= 4. (End)

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A001723 Generalized Stirling numbers.

Original entry on oeis.org

1, 26, 485, 8175, 134449, 2231012, 37972304, 668566300, 12230426076, 232959299496, 4623952866312, 95644160132976, 2060772784375824, 46219209678691200, 1078100893671811200, 26129183717351462400, 657337657573760947200, 17147815411007234188800
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=5) ~ exp(-x)/x^4*(1 - 26/x + 485/x^2 - 8175/x^3 + 134449/x^4 - 2231012/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Sum[(-1)^(n + k)*Binomial[k + 3, 3]*5^k*StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(3+k, 3)*5^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,5)|, for n >= 3. - Milan Janjic, Dec 21 2008

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Showing 1-10 of 11 results. Next