cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A163938 Triangle related to the o.g.f.s. of the right hand columns of A163932 (E(x, m=3, n)).

Original entry on oeis.org

1, 3, 3, 11, 28, 6, 50, 225, 135, 10, 274, 1858, 2092, 486, 15, 1764, 16464, 29148, 13482, 1491, 21, 13068, 158352, 398640, 301220, 70485, 4152, 28, 109584, 1655172, 5552724, 6132780, 2432070, 322971, 10863, 36
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The asymptotic expansions of the higher order exponential integral E(x, m=3, n) lead to triangle A163932, see A163931 for information on the E(x,m,n). The o.g.f.s. of the right hand columns of triangle A163932 have a nice structure Gf(p) = W3(z,p)/(1-z)^(2*p+1) with p = 1 for the first right hand column, p = 2 for the second right hand column, etc. The coefficients of the W3(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. The row sums of this triangle lead to A001879, see A163936 for more information.

Examples

			The first few W3(z,p) polynomials are:
W3(z,p=1) = 1/(1-z)^3
W3(z,p=2) = (3 + 3*z)/(1-z)^5
W3(z,p=3) = (11 + 28*z + 6*z^2)/(1-z)^7
W3(z,p=4) = (50 + 225*z + 135*z^2 + 10*z^3)/(1-z)^9
		

Crossrefs

Row sums equal A001879.
A000254 equals the first left hand column.
A000217 equals the first right hand column.
Cf. A163931 (E(x,m,n)) and A163932.
Cf. A163936 (E(x,m=1,n)), A163937 (E(x,m=2,n)) and A163939 (E(x,m=4,n)).

Programs

  • Maple
    with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k+1)*(m-k)/2!)*binomial(2*n+1, k)*stirling1(m+n-k, m-k+1), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 27 2012
  • Mathematica
    Table[Sum[(-1)^(n + k + 1)*Binomial[m - k + 1, 2]*Binomial[2*n + 1, k]*StirlingS1[m + n - k, m - k + 1], {k, 0, m - 1}], {n, 1, 50}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(sum(k=0,m-1, (-1)^(n+k+1)* binomial(m-k+1,2)*binomial(2*n+1,k) *stirling(m+n-k,m-k+1, 1)) ,", "))) \\ G. C. Greubel, Aug 13 2017

Formula

a(n,m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(m-k+1,2) *binomial(2*n+1,k) *stirling1(m+n-k,m-k+1), for 1 <= m <= n.

A163933 Third right hand column of triangle A163932.

Original entry on oeis.org

11, 105, 510, 1750, 4830, 11466, 24360, 47520, 86625, 149435, 246246, 390390, 598780, 892500, 1297440, 1844976, 2572695, 3525165, 4754750, 6322470, 8298906, 10765150, 13813800, 17550000, 22092525, 27574911, 34146630, 41974310
Offset: 3

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Crossrefs

Cf. A048994 (Stirling1).
Equals the third right hand column of triangle A163932.
A000217 and A006011 are the first and second right hand columns.

Programs

  • Maple
    nmax:=30; with(combinat, stirling1): for n from 1 to nmax do for m from 1 to n do a(n,m):=(-1)^(n+m)*(m)*(m+1)*stirling1(n+1,m+1)/2 od: od: seq(a(n,n-2),n=3..nmax);
  • Mathematica
    Table[(n-2)(n-1)StirlingS1[n+1,n-1]/2,{n,3,30}] (* Harvey P. Dale, Oct 09 2011 *)

Formula

a(n) = (n-2)*(n-1)*Stirling1(n+1,n-1)/2.
G.f.: z^3*(11 + 6*z^2 + 28*z)/(1-z)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 9. - Chai Wah Wu, Jan 25 2021

A163931 Decimal expansion of the higher-order exponential integral E(x, m=2, n=1) at x=1.

Original entry on oeis.org

0, 9, 7, 8, 4, 3, 1, 9, 7, 2, 1, 6, 6, 7, 0, 1, 7, 9, 3, 2, 5, 5, 3, 7, 7, 8, 9, 0, 4, 5, 2, 8, 0, 0, 8, 2, 7, 6, 9, 5, 8, 2, 2, 6, 9, 5, 3, 0, 2, 6, 5, 7, 6, 5, 5, 7, 4, 4, 2, 1, 2, 4, 2, 4, 5, 4, 4, 7, 1, 3, 7, 6, 2, 6, 1, 4, 0, 9, 0, 4, 8, 8, 7, 3, 6, 9, 6, 0, 4, 8, 9, 1, 8, 5, 5, 5, 0, 8, 9, 4, 5, 4, 6, 7, 0
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

We define the higher-order exponential integrals by E(x,m,n) = x^(n-1)*Integral_{t=x..infinity} E(t,m-1,n)/t^n for m >= 1 and n >= 1 with E(x,m=0,n) = exp(-x), see Meijer and Baken.
The properties of the E(x,m,n) are analogous to those of the well-known exponential integrals E(x,m=1,n), see Abramowitz and Stegun and the formulas.
The series expansions of the higher-order exponential integrals are dominated by the constants alpha(k,n), see A163927, and gamma(k,n) = G(k,n), see A090998.
For information about the asymptotic expansion of the E(x,m,n) see A163932.
Values of E(x,m,n) can be evaluated with the Maple program.

Examples

			E(1,2,1) = 0.09784319721667017932553778904528008276958226953026576557442124245....
		

Crossrefs

Cf. A163927 (alpha(k,n)), A090998 (gamma(k,n) = G(k,n)), A163932.
Cf. A068985 (E(x=1,m=0,n) = exp(-1)) and A099285 (E(x=1,m=1,n=1)).
Cf. A001563 (n*n!), A002775 (n^2*n!), A091363 (n^3*n!) and A091364 (n^4*n!).

Programs

  • Maple
    E:= proc(x,m,n) local nmax, kmax, EI, k1, k2, n1, n2; option remember: nmax:=20; kmax:=20; k1:=0: for n1 from 0 to nmax do alpha(k1,n1):=1 od: for k1 from 1 to kmax do for n1 from 1 to nmax do alpha(k1,n1) := (1/k1)*sum(sum(p^(-2*(k1-i1)),p=0..n1-1)*alpha(i1, n1),i1=0..k1-1) od; od: for n2 from 0 to kmax do G(0,n2):=1 od: for n2 from 1 to nmax do for k2 from 1 to kmax do G(k2,n2):=(1/k2)*(((gamma-sum(p^(-1),p=1..n2-1))*G(k2-1,n2)+ sum((Zeta(k2-i2)-sum(p^(-(k2-i2)), p=1..n2-1))*G(i2,n2),i2=0..k2-2))) od; od: EI:= evalf((-1)^m*((-x)^(n-1)/(n-1)!*sum(alpha(kz,n)*(G(m-2*kz,n)+sum(G(m-2*kz-i,n)*ln(x)^i/i!,i=1..m-2*kz)), kz=0..floor(m/2)) + sum((-x)^kx/((kx-n+1)^m*kx!),kx=0..n-2) + sum((-x)^ky/((ky-n+1)^m*ky!),ky=n..infinity))); return(EI): end:
  • Mathematica
    Join[{0}, RealDigits[ N[ EulerGamma^2/2 + Pi^2/12 - HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -1], 104]][[1]]] (* Jean-François Alcover, Nov 07 2012, from 1st formula *)
  • PARI
    t=1; Euler^2/2 + Pi^2/12 + sumalt(k=1, t*=k; (-1)^k/(k^2*t)) \\ Charles R Greathouse IV, Nov 07 2016

Formula

E(x=1,m=2,n=1) = gamma^2/2 + Pi^2/12 + Sum_{k>=1} ((-1)^k/(k^2*k!)).
E(x=0,n,m) = (1/(n-1))^m for n >= 2.
Integral_{t=0..x} E(t,m,n) = 1/n^m - E(x,n,n+1).
dE(x,m,n+1)/dx = - E(x,m,n).
E(x,m,n+1) = (1/n)*(E(x,m-1,n+1) - x*E(x,m,n)).
E(x,m,n) = (-1)^m * ((-x)^(n-1)/(n-1)!) * Sum_{kz=0..floor(m/2)}(alpha (kz, n)*G(m-2*kz, n)) + (-1) ^m * ((-x)^(n-1)/(n-1)!) * Sum_{kz=0..floor(m/2)}(Sum_{i=1..m-2*kz}(alpha (kz, n) *G(m-2*kz-i, n)*log(x)^i/i!)) + (-1)^m * Sum_{ kx=0..n-2}((-x)^kx/((kx-n+1)^m*kx!) + (-1)^m * Sum_{ky>=n}((-x)^ky /(( ky-n+1)^m*ky!)).

A130534 Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 09 2007

Keywords

Comments

This triangle is an unsigned version of the triangle of Stirling numbers of the first kind, A008275, which is the main entry for these numbers. - N. J. A. Sloane, Jan 25 2011
Or, triangle T(n,k), 0 <= k <= n, read by rows given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Reversal of A094638.
Equals A132393*A007318, as infinite lower triangular matrices. - Philippe Deléham, Nov 13 2007
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the exponential integrals E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + n*(n+1)/x^2 - n*(n+1)*(n+2)/x^3 + ...), see Abramowitz and Stegun. This formula follows from the general formula for the asymptotic expansion, see A163932. We rewrite E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) and observe that the T(n,m) are the polynomials coefficients in the denominators. Looking at the a(n,m) formula of A028421, A163932 and A163934, and shifting the offset given above to 1, we can write T(n-1,m-1) = a(n,m) = (-1)^(n+m)*Stirling1(n,m), see the Maple program.
The asymptotic expansion leads for values of n from one to eleven to known sequences, see the cross-references. With these sequences one can form the triangles A008279 (right-hand columns) and A094587 (left-hand columns).
See A163936 for information about the o.g.f.s. of the right-hand columns of this triangle.
(End)
The number of elements greater than i to the left of i in a permutation gives the i-th element of the inversion vector. (Skiena-Pemmaraju 2003, p. 69.) T(n,k) is the number of n-permutations that have exactly k 0's in their inversion vector. See evidence in Mathematica code below. - Geoffrey Critzer, May 07 2010
T(n,k) counts the rooted trees with k+1 trunks in forests of "naturally grown" rooted trees with n+2 nodes. This corresponds to sums of coefficients of iterated derivatives representing vectors, Lie derivatives, or infinitesimal generators for flow fields and formal group laws. Cf. links in A139605. - Tom Copeland, Mar 23 2014
A refinement is A036039. - Tom Copeland, Mar 30 2014
From Tom Copeland, Apr 05 2014: (Start)
With initial n=1 and row polynomials of T as p(n,x)=x(x+1)...(x+n-1), the powers of x correspond to the number of trunks of the rooted trees of the "naturally-grown" forest referred to above. With each trunk allowed m colors, p(n,m) gives the number of such non-plane colored trees for the forest with each tree having n+1 vertices.
p(2,m) = m + m^2 = A002378(m) = 2*A000217(m) = 2*(first subdiag of |A238363|).
p(3,m) = 2m + 3m^2 + m^3 = A007531(m+2) = 3*A007290(m+2) = 3*(second subdiag A238363).
p(4,m) = 6m + 11m^2 + 6m^3 + m^4 = A052762(m+3) = 4*A033487(m) = 4*(third subdiag).
From the Joni et al. link, p(n,m) also represents the disposition of n distinguishable flags on m distinguishable flagpoles.
The chromatic polynomial for the complete graph K_n is the falling factorial, which encodes the colorings of the n vertices of K_n and gives a shifted version of p(n,m).
E.g.f. for the row polynomials: (1-y)^(-x).
(End)
A relation to derivatives of the determinant |V(n)| of the n X n Vandermonde matrix V(n) in the indeterminates c(1) thru c(n):
|V(n)| = Product_{1<=jTom Copeland, Apr 10 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A094587 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well defined). See the Example section. (End)
For the relation of this rising factorial to the moments of Viennot's Laguerre stories, see the Hetyei link, p. 4. - Tom Copeland, Oct 01 2015
Can also be seen as the Bell transform of n! without column 0 (and shifted enumeration). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle  T(n,k) begins:
n\k         0        1        2       3       4      5      6     7    8  9 10
n=0:        1
n=1:        1        1
n=2:        2        3        1
n=3:        6       11        6       1
n=4:       24       50       35      10       1
n=5:      120      274      225      85      15      1
n=6:      720     1764     1624     735     175     21      1
n=7:     5040    13068    13132    6769    1960    322     28     1
n=8:    40320   109584   118124   67284   22449   4536    546    36    1
n=9:   362880  1026576  1172700  723680  269325  63273   9450   870   45  1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55  1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1          \/1        \/1        \      / 1           \
  | 1  1       ||0 1      ||0 1      |      | 1  1        |
  | 2  2  1    ||0 1 1    ||0 0 1    |... = | 2  3  1     |
  | 6  6  3 1  ||0 2 2 1  ||0 0 1 1  |      | 6 11  6  1  |
  |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1|      |24 50 35 10 1|
  |...         ||...      ||...      |      |...          |
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]

Crossrefs

See A008275, which is the main entry for these numbers; A094638 (reversed rows).
From Johannes W. Meijer, Oct 07 2009: (Start)
Row sums equal A000142.
The asymptotic expansions lead to A000142 (n=1), A000142(n=2; minus a(0)), A001710 (n=3), A001715 (n=4), A001720 (n=5), A001725 (n=6), A001730 (n=7), A049388 (n=8), A049389 (n=9), A049398 (n=10), A051431 (n=11), A008279 and A094587.
Cf. A163931 (E(x,m,n)), A028421 (m=2), A163932 (m=3), A163934 (m=4), A163936.
(End)
Cf. A136662.

Programs

  • Haskell
    a130534 n k = a130534_tabl !! n !! k
    a130534_row n = a130534_tabl !! n
    a130534_tabl = map (map abs) a008275_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
    BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
    rows = 10;
    t = Range[0, rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

T(0,0) = 1, T(n,k) = 0 if k > n or if n < 0, T(n,k) = T(n-1,k-1) + n*T(n-1,k). T(n,0) = n! = A000142(n). T(2*n,n) = A129505(n+1). Sum_{k=0..n} T(n,k) = (n+1)! = A000142(n+1). Sum_{k=0..n} T(n,k)^2 = A047796(n+1). T(n,k) = |Stirling1(n+1,k+1)|, see A008275. (x+1)(x+2)...(x+n) = Sum_{k=0..n} T(n,k)*x^k. [Corrected by Arie Bos, Jul 11 2008]
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. - Philippe Deléham, Nov 13 2007
For k=1..n, let A={a_1,a_2,...,a_k} denote a size-k subset of {1,2,...,n}. Then T(n,n-k) = Sum(Product_{i=1..k} a_i) where the sum is over all subsets A. For example, T(4,1)=50 since 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 = 50. - Dennis P. Walsh, Jan 25 2011
The preceding formula means T(n,k) = sigma_{n-k}(1,2,3,..,n) with the (n-k)-th elementary symmetric function sigma with the indeterminates chosen as 1,2,...,n. See the Oct 24 2011 comment in A094638 with sigma called there a. - Wolfdieter Lang, Feb 06 2013
From Gary W. Adamson, Jul 08 2011: (Start)
n-th row of the triangle = top row of M^n, where M is the production matrix:
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
... (End)
Exponential Riordan array [1/(1 - x), log(1/(1 - x))]. Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (n + 1)!/(n + 1 - i)!*T(n-i,k). - Peter Bala, Jul 21 2014

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A000399 Unsigned Stirling numbers of first kind s(n,3).

Original entry on oeis.org

1, 6, 35, 225, 1624, 13132, 118124, 1172700, 12753576, 150917976, 1931559552, 26596717056, 392156797824, 6165817614720, 102992244837120, 1821602444624640, 34012249593822720, 668609730341153280, 13803759753640704000
Offset: 3

Views

Author

Keywords

Comments

Number of permutations of n elements with exactly 3 cycles.
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=1) ~ exp(-x)/x^3*(1 - 6/x + 35/x^2 - 225/x^3 + 1624/x^4 - 13132/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Oct 20 2009

Examples

			(-log(1-x))^3 = x^3 + 3/2*x^4 + 7/4*x^5 + 15/8*x^6 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation). - Shanzhen Gao, Sep 14 2010
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A000399:=func< n | Abs(StirlingFirst(n, 3)) >; [ A000399(n): n in [3..25] ]; // Klaus Brockhaus, Jan 14 2011
  • Maple
    seq(abs(Stirling1(n,3)),n=3..30); # Robert Israel, Jul 05 2015
  • Mathematica
    a=Log[1/(1-x)];Range[0,20]! CoefficientList[Series[a^3/3!,{x,0,20}],x]
    f[n_] := Abs@ StirlingS1[n, 3]; Array[f, 19, 3]
    Abs[StirlingS1[Range[3,30],3]] (* Harvey P. Dale, Jun 23 2014 *)
    f[n_] := Gamma[n]*(HarmonicNumber[n - 1]^2 + Zeta[2, n] - Zeta[2])/2; Array[f, 19, 3] (* Robert G. Wilson v, Jul 05 2015 *)
  • MuPAD
    f := proc(n) option remember; begin n^3*f(n-3)-(3*n^2+3*n+1)*f(n-2)+3*(n+1)*f(n-1) end_proc: f(0) := 1: f(1) := 6: f(2) := 35:
    
  • PARI
    for(n=2,50,print1(polcoeff(prod(i=1,n,x+i),2,x),","))
    
  • Sage
    [stirling_number1(i+2,3) for i in range(1,22)] # Zerinvary Lajos, Jun 27 2008
    

Formula

Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^2; or a(n) = P''(n-1,0)/2!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 3]
E.g.f.: -log(1-x)^3/3!.
a(n) is the coefficient of x^(n+3) in (-log(1-x))^3, multiplied by (n+3)!/6.
a(n) = ((Sum_{i=1..n-1} 1/i)^2 - Sum_{i=1..n-1} 1/i^2)*(n-1)!/2 for n >= 3. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 18 2000
a(n) = det(|S(i+3,j+2)|, 1 <= i,j <= n-3), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
a(n) = Gamma(n)*(HarmonicNumber(n-1)^2 + Zeta(2,n) - Zeta(2))/2. - Gerry Martens, Jul 05 2015
From Petros Hadjicostas, Jun 28 2020: (Start)
a(n) = (n-3)! + (2*n-3)*a(n-1) - (n-2)^2*a(n-2) for n >= 5.
a(n) = 3*(n-2)*a(n-1) - (3*n^2-15*n+19)*a(n-2) + (n-3)^3*a(n-3) for n >= 6. (End)

A028421 Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0

Views

Author

Peter Wiggen (wiggen(AT)math.psu.edu)

Keywords

Comments

Previous name was: Number triangle f(n, k) from n-th differences of the sequence {1/m^2}{m >= 1}, for n >= 0; the n-th difference sequence is {(-1)^n*n!*P(n, m)/D(n, m)^2}{m >= 1} where P(n, x) is the row polynomial P(n, x) = Sum_{k=0..n} f(n,k)*x^k and D(n, x) = x*(x+1)*...*(x+n).
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the general formula of the asymptotic expansion of E(x,m,n) can be found in A163932.
We used the general formula and the asymptotic expansion of E(x,m=1,n), see A130534, to determine that E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2 + 6*n + 3*n^2)/x^2 - (6 + 22*n + 18*n^2 + 4*n^3)/x^3 + ...) which can be verified with the EA(x,2,n) formula, see A163932. The coefficients in the denominators of this expansion lead to the sequence given above.
The asymptotic expansion of E(x,m=2,n) leads for n from one to ten to known sequences, see the cross-references. With these sequences one can form the triangles A165674 (left hand columns) and A093905 (right hand columns).
(End)
For connections to an operator relation between log(x) and x^n(d/dx)^n, see A238363. - Tom Copeland, Feb 28 2014
From Wolfdieter Lang, Nov 25 2018: (Start)
The signed triangle t(n, k) := (-1)^{n-k}*f(n, k) gives (n+1)*N(-1;n,x) = Sum_{k=0..n} t(n, k)*x^k, where N(-1;n,x) are the Narumi polynomials with parameter a = -1 (see the Weisstein link).
The members of the n-th difference sequence of the sequence {1/m^2}_{m>=1} mentioned above satisfies the recurrence delta(n, m) = delta(n-1, m+1) - delta(n-1, m), for n >= 1, m >= 1, with input delta(0, m) = 1/m^2. The solution is delta(n, m) = (n+1)!*N(-1;n,-m)/risefac(m, n+1)^2, with Narumi polynomials N(-1;n,x) and the rising factorials risefac(x, n+1) = D(n, x) = x*(x+1)*...*(x+n).
The above mentioned row polynomials P satisfy P(n, x) = (-1)^n*(n + 1)*N(-1;n,-x), for n >= 0. The recurrence is P(n, x) = (-x^2*P(n-1, x+1) + (n+x)^2*P(n-1, x))/n, for n >= 1, and P(0, x) = 1. (End)
The triangle is the exponential Riordan square (cf. A321620) of -log(1-x) with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
n\k       0        1        2        3        4       5       6      7     8   9 10
------------------------------------------------------------------------------------
0:        1
1:        1        2
2:        2        6        3
3:        6       22       18        4
4:       24      100      105       40        5
5:      120      548      675      340       75       6
6:      720     3528     4872     2940      875     126       7
7:     5040    26136    39396    27076     9800    1932     196      8
8:    40320   219168   354372   269136   112245   27216    3822    288     9
9:   362880  2053152  3518100  2894720  1346625  379638   66150   6960   405  10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
		

Crossrefs

Row sums give A000254(n+1), n >= 0.
Cf. A132393 (unsigned Stirling1), A061356, A139526, A321620.
From Johannes W. Meijer, Oct 07 2009: (Start)
A000142, A052517, 3*A000399, 5*A000482 are the first four left hand columns; A000027, A002411 are the first two right hand columns.
The asymptotic expansion of E(x,m=2,n) leads to A000254 (n=1), A001705 (n=2), A001711 (n=3), A001716 (n=4), A001721 (n=5), A051524 (n=6), A051545 (n=7), A051560 (n=8), A051562 (n=9), A051564 (n=10), A093905 (triangle) and A165674 (triangle).
Cf. A163931 (E(x,m,n)), A130534 (m=1), A163932 (m=3), A163934 (m=4), A074246 (E(x,m=2,n+1)). (End)

Programs

  • Maple
    A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
    seq(seq(A028421(n,k), k=0..n), n=0..8);
    # Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
    egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
    ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
    seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
  • Mathematica
    f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019

Formula

E.g.f.: d/dt(-log(1-t)/(1-t)^x). - Vladeta Jovovic, Oct 12 2003
The e.g.f. with offset 1: y = x + (1 + 2*t)*x^2/2! + (2 + 6*t + 3*t^2)*x^3/3! + ... has series reversion with respect to x equal to y - (1 + 2*t)*y^2/2! + (1 + 3*t)^2*y^3/3! - (1 + 4*t)^3*y^4/4! + .... This is an e.g.f. for a signed version of A139526. - Peter Bala, Jul 18 2013
Recurrence: T(n, k) = 0 if n < k; if k = 0 then T(0, 0) = 1 and T(n, 0) = n * T(n-1, 0) for n >= 1, otherwise T(n, k) = n*T(n-1, k) + ((k+1)/k)*T(n-1, k-1). From the unsigned Stirling1 recurrence. - Wolfdieter Lang, Nov 25 2018

Extensions

Edited by Wolfdieter Lang, Nov 23 2018

A112007 Coefficient triangle for polynomials used for o.g.f.s for unsigned Stirling1 diagonals.

Original entry on oeis.org

1, 2, 1, 6, 8, 1, 24, 58, 22, 1, 120, 444, 328, 52, 1, 720, 3708, 4400, 1452, 114, 1, 5040, 33984, 58140, 32120, 5610, 240, 1, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

This is the row reversed second-order Eulerian triangle A008517(k+1,k+1-m). For references see A008517.
The o.g.f. for the k-th diagonal, k >= 1, of the unsigned Stirling1 triangle |A008275| is G1(1,x)=1/(1-x) if k=1 and G1(k,x) = g1(k-2,x)/(1-x)^(2*k-1), if k >= 2, with the row polynomials g1(k;x):=Sum_{m=0..k} a(k,m)*x^m.
The recurrence eq. for the row polynomials is g1(k,x)=((k+1)+k*x)*g1(k-1,x) + x*(1-x)*(d/dx)g1(k-1,x), k >= 1, with input g1(0,x):=1.
The column sequences start with A000142 (factorials), A002538, A002539, A112008, A112485.
This o.g.f. computation was inspired by Bender et al. article where the Stirling polynomials have been rediscussed.
The A163936 triangle is identical to the triangle given above except for an extra right hand column [1, 0, 0, 0, ... ]. The A163936 triangle is related to the higher order exponential integrals E(x,m,n), see A163931 and A163932. - Johannes W. Meijer, Oct 16 2009

Examples

			Triangle begins:
    1;
    2,   1;
    6,   8,   1;
   24,  58,  22,   1;
  120, 444, 328,  52,   1;
  ...
G.f. for k=3 sequence A000914(n-1), [2,11,35,85,175,322,546,...], is G1(3,x)= g1(1,x)/(1-x)^5= (2+x)/(1-x)^5.
		

Crossrefs

Row sums give A001147(k+1) = (2*k+1)!!, k>=0.

Programs

  • Maple
    a:= proc(k,m) option remember; if m >= 0 and k >= 0 then (k+m+1)*procname(k-1,m)+(k-m+1)*procname(k-1,m-1) else 0 fi end proc:
    a(0,0):= 1:
    seq(seq(a(k,m),m=0..k),k=0..10); # Robert Israel, Jul 20 2017
  • Mathematica
    a[k_, m_] = Sum[(-1)^(k + n + 1)*Binomial[2k + 3, n]*StirlingS1[m + k - n + 2, m + 1 - n], {n, 0, m}]; Flatten[Table[a[k, m], {k, 0, 8}, {m, 0, k}]][[1 ;; 45]] (* Jean-François Alcover, Jun 01 2011, after Johannes W. Meijer *)
  • PARI
    a(k, m)=sum(n=0, m, (-1)^(k + n + 1)*binomial(2*k + 3, n)*stirling(m + k - n + 2, m + 1 - n, 1));
    for(k=0, 10, for(m=0, k, print1(a(k, m),", "))) \\ Indranil Ghosh, Jul 21 2017

Formula

a(k, m) = (k+m+1)*a(k-1, m) + (k-m+1)*a(k-1, m-1), if k >= m >= 0, a(0, 0)=1; a(k, -1):=0, otherwise 0.
a(k,m) = Sum_{n=0..m} (-1)^(k+n+1)*C(2*k+3,n)*Stirling1(m+k-n+2,m+1-n). - Johannes W. Meijer, Oct 16 2009
The compositional inverse (with respect to x) of y = y(t,x) = (x+t*log(1-x)) is x = x(t,y) = 1/(1-t)*y + t/(1-t)^3*y^2/2! + (2*t+t^2)/(1-t)^5*y^3/3! + (6*t+8*t^2+t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed above, the rational functions in t are the generating functions for the diagonals of |A008275|. See the Bala link for a proof. Cf. A008517. - Peter Bala, Dec 02 2011

A006011 a(n) = n^2*(n^2 - 1)/4.

Original entry on oeis.org

0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0

Views

Author

Keywords

Comments

Products of two consecutive triangular numbers (A000217).
a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007
For n >= 2 this is the second rightmost column of A163932. - Johannes W. Meijer, Oct 16 2009
Partial sums of A059270. - J. M. Bergot, Jun 27 2013
Using the integers, triangular numbers, and squares plot the points (A001477(n),A001477(n+1)), (A000217(n), A000217(n+1)), and (A000290(n),A000290(n+1)) to create the vertices of a triangle. One-half the area of this triangle = a(n). - J. M. Bergot, Aug 01 2013
a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013

Examples

			From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
   3;
   4, 14;
   5, 16, 39;
   6, 18, 42,  84;
   7, 20, 45,  88, 155;
   8, 22, 48,  92, 160, 258;
   9, 24, 51,  96, 165, 264, 399;
  10, 26, 54, 100, 170, 270, 406, 584;
  11, 28, 57, 104, 175, 276, 413, 592, 819;
  12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A006011 := proc(n)
        n^2*(n^2-1)/4 ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
    Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013

Formula

G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006
a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007
a(n) = (A126274(n) - A000537(n+1))/2. - Enrique Pérez Herrero, Mar 11 2013
Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n^2+n) - A000217(n)*A000217(n+1). - Charlie Marion, Feb 15 2020
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/4. - Stefano Spezia, Mar 12 2024

A000454 Unsigned Stirling numbers of first kind s(n,4).

Original entry on oeis.org

1, 10, 85, 735, 6769, 67284, 723680, 8409500, 105258076, 1414014888, 20313753096, 310989260400, 5056995703824, 87077748875904, 1583313975727488, 30321254007719424, 610116075740491776
Offset: 4

Views

Author

Keywords

Comments

Number of permutations of n elements with exactly 4 cycles.
The asymptotic expansion of the higher order exponential integral E(x, m=4, n=1) ~ exp(-x)/x^4*(1 - 10/x + 85/x^2 - 735/x^3 + 6769/x^4 - ...) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Jun 11 2016

Examples

			(-log(1-x))^4 = x^4 + 2*x^5 + (17/6)*x^6 + (7/2)*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation) [From Shanzhen Gao, Sep 14 2010] [Apparently unpublished as of June 2016]

Crossrefs

Programs

  • Mathematica
    Abs[StirlingS1[Range[4,20],4]] (* Harvey P. Dale, Aug 26 2011 *)
  • PARI
    for(n=3,50,print1(polcoeff(prod(i=1,n,x+i),3,x),","))
    
  • Sage
    [stirling_number1(i,4) for i in range(4,22)] # Zerinvary Lajos, Jun 27 2008

Formula

Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^3; or a(n) = P'''(n-1,0)/3!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 4]
E.g.f.: (-log(1-x))^4/4!. [Corrected by Joerg Arndt, Oct 05 2009]
a(n) is coefficient of x^(n+4) in (-log(1-x))^4, multiplied by (n+4)!/4!.
a(n) = (h(n-1, 1)^3 - 3*h(n-1, 1)*h(n-1, 2) + 2*h(n-1, 3))*(n-1)!/3!, where h(n, r) = Sum_{i=1..n} 1/i^r. - Klaus Strassburger, 2000
a(n) = det(|S(i+4,j+3)|, 1 <= i,j <= n-4), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
a(n) = y(n)*n!/24, where y(0) = y(1) = y(2) = y(3) = 0, y(4) = 1 and n^4*y(n) + (-1-5*n-10*n^2-10*n^3-4*n^4)*y(n+1) + (1+n)*(2+n)*(7+12*n+6*n^2)*y(n+2) - 2*(1+n)*(2+n)*(3+n)*(3+2*n)*y(3+n) + (1+n)*(2+n)*(3+n)*(4+n)*y(n+4) = 0. - Benedict W. J. Irwin, Jul 12 2016
From Vaclav Kotesovec, Jul 12 2016: (Start)
a(n) = 2*(2*n - 5)*a(n-1) - (6*n^2 - 36*n + 55)*a(n-2) + (2*n - 7)*(2*n^2 - 14*n + 25)*a(n-3) - (n-4)^4*a(n-4).
a(n) ~ n! * (log(n))^3 / (6*n) * (1 + 3*gamma/log(n) + (3*gamma^2 - Pi^2/2)/ (log(n))^2), where gamma is the Euler-Mascheroni constant A001620. (End)
From Petros Hadjicostas, Jun 29 2020: (Start)
a(n) = A000399(n-1) + (n-1)*a(n-1) for n >= 1 (assuming a(n) = 0 for n = 0..3).
a(n) = A103719(n-4) + (n-2)*a(n-1) for n >= 4.
a(n) = A000254(n-3) + (2*n-3)*a(n-1) - (n-2)^2*a(n-2) for n >= 3.
a(n) = (n-4)! + 3*(n-2)*a(n-1) - (3*n^2-15*n+19)*a(n-2) + (n-3)^3*a(n-3) for n >= 4. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 18 2000
Showing 1-10 of 28 results. Next