A001707 Generalized Stirling numbers.
1, 14, 155, 1665, 18424, 214676, 2655764, 34967140, 489896616, 7292774280, 115119818736, 1922666722704, 33896996544384, 629429693586048, 12283618766690304, 251426391808144896, 5387217520095244800, 120615281647055884800, 2817014230489985049600
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
Programs
-
Mathematica
nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
-
PARI
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*2^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 01 2023
Formula
E.g.f.: - log ( 1 - x )^3 / 6 ( x - 1 )^2.
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+3, 3)*2^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-3) = |f(n,3,2)|, for n>=3. [From Milan Janjic, Dec 21 2008]
Extensions
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments