cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001707 Generalized Stirling numbers.

Original entry on oeis.org

1, 14, 155, 1665, 18424, 214676, 2655764, 34967140, 489896616, 7292774280, 115119818736, 1922666722704, 33896996544384, 629429693586048, 12283618766690304, 251426391808144896, 5387217520095244800, 120615281647055884800, 2817014230489985049600
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=2) ~ exp(-x)/x^4*(1 - 14/x + 155/x^2 - 1665/x^3 + 18424/x^4 - 214676/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*2^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 01 2023

Formula

E.g.f.: - log ( 1 - x )^3 / 6 ( x - 1 )^2.
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+3, 3)*2^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-3) = |f(n,3,2)|, for n>=3. [From Milan Janjic, Dec 21 2008]

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004