A001723 Generalized Stirling numbers.
1, 26, 485, 8175, 134449, 2231012, 37972304, 668566300, 12230426076, 232959299496, 4623952866312, 95644160132976, 2060772784375824, 46219209678691200, 1078100893671811200, 26129183717351462400, 657337657573760947200, 17147815411007234188800
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliƩs aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
Programs
-
Mathematica
Table[Sum[(-1)^(n + k)*Binomial[k + 3, 3]*5^k*StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
Formula
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(3+k, 3)*5^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,5)|, for n >= 3. - Milan Janjic, Dec 21 2008
Extensions
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments