cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A263608 Palindromes which are base-3 representations of squares.

Original entry on oeis.org

0, 1, 11, 121, 10201, 11111, 112211, 122221, 1002001, 1120211, 11022011, 100020001, 101212101, 122111221, 1012112101, 1100220011, 10000200001, 10111011101, 110002200011, 111221122111, 1000002000001, 1001221221001, 1012200022101, 1101202021011, 1221221221221, 10101111110101
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2015

Keywords

Crossrefs

Intersection of A001738 and A118594.

Programs

  • Maple
    rev3:= proc(n) local L,i; L:= convert(n,base,3); add(L[-i]*3^(i-1),i=1..nops(L)) end proc:
    c3:= proc(n) local L,i; L:= convert(n,base,3); add(L[i]*10^(i-1),i=1..nops(L)) end proc:
    R:= 0,1: count:= 2:
    for d from 2 while count < 100 do
        if d::odd then
          V:= select(issqr, [seq(seq(a*3^((d+1)/2) + b*3^((d-1)/2)+rev3(a),b=0..2),a=3^((d-3)/2) .. 3^((d-1)/2)-1)])
        else
          V:= select(issqr, [seq(a*3^(d/2) + rev3(a), a=3^(d/2-1) .. 3^(d/2)-1)]);
        fi;
        count:= count+nops(V);
        R:= R, op(map(c3,V));
    od:
    R; # Robert Israel, May 19 2024

Extensions

Name edited by Robert Israel, May 19 2024

A091093 In ternary representation: minimal number of editing steps (delete, insert or substitute) to transform n into n^2.

Original entry on oeis.org

0, 0, 2, 1, 1, 2, 3, 2, 3, 2, 2, 4, 2, 4, 3, 3, 4, 4, 4, 4, 5, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 3, 3, 5, 3, 5, 3, 3, 5, 5, 5, 6, 4, 3, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 4, 5, 4, 4, 5, 5, 4, 5, 4, 5, 5, 5, 4, 6, 4, 5, 4, 5, 4, 5, 4, 4, 5, 4, 4, 4, 5, 5, 5, 4, 4, 6, 4, 5, 4, 4, 5, 5, 5, 5, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 18 2003

Keywords

Examples

			a(12)=2: 12->'110', insert a 2 between the 1's and insert a 0 at the end: '12100'->144=12^2.
		

Crossrefs

Programs

  • Maple
    A091093:= proc(x) local L1, L2;
       L1:= convert(map(`+`,ListTools:-Reverse(convert(x,base,3)),48),bytes);
       L2:= convert(map(`+`,ListTools:-Reverse(convert(x^2,base,3)),48),bytes);
       StringTools:-Levenshtein(L1,L2)
    end proc:
    seq(A091093(i),i=0..1000); # Robert Israel, May 06 2014

Formula

a(n) = LevenshteinDistance(A007089(n), A001738(n)).

A091091 Numbers needing in binary and ternary representation an equal minimal number of editing steps (delete, insert or substitute) to transform them into their square.

Original entry on oeis.org

0, 1, 5, 6, 8, 11, 13, 16, 17, 18, 19, 33, 35, 38, 40, 56, 60, 74, 122, 123, 133, 143, 146, 164, 168, 173, 299, 350, 365, 429, 497, 515, 527, 564, 566, 593, 608, 611, 710, 1031, 1050, 1052, 1059, 1088, 1089, 1090, 1092, 1096, 1105, 1287, 1301, 1316, 1322
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 18 2003

Keywords

Comments

A091092(a(n)) = A091093(a(n)).

Crossrefs

Showing 1-3 of 3 results.