cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001766 Index of (the image of) the modular group Gamma(n) in PSL_2(Z).

Original entry on oeis.org

1, 6, 12, 24, 60, 72, 168, 192, 324, 360, 660, 576, 1092, 1008, 1440, 1536, 2448, 1944, 3420, 2880, 4032, 3960, 6072, 4608, 7500, 6552, 8748, 8064, 12180, 8640, 14880, 12288, 15840, 14688, 20160, 15552, 25308, 20520, 26208, 23040, 34440, 24192, 39732, 31680
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the degree of the modular curve X(N) as a cover of the j-line.

References

  • R. C. Gunning, Lectures on Modular Forms, Princeton Univ. Press, Princeton, NJ, 1962, p. 15.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    proc(n) local b,d: b := (n^3)/2: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
  • Mathematica
    Table[ (n^3)/If[ n>2, 2, 1 ] Times@@(1-1/Select[ Range[ n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 45} ] (* Olivier Gérard, Aug 15 1997 *)
  • PARI
    a(n) = if (n==1, 1, if (n==2, 6, my(f=factor(n)); prod(k=1, #f~, 1-1/f[k,1]^2)*n^3/2)); \\ Michel Marcus, Oct 23 2019

Formula

a(n) = A000056(n) for n = 2 and (1/2)*A000056(n) for n > 2 (since -I is contained in Gamma(2) but not in Gamma(n) for n > 2).
a(n) = n * A000114(n). - Michael Somos, Jan 29 2004
a(n) = ((n^3)/2)*Product_{p | n, p prime} (1-1/p^2), for n>=3. - Michel Marcus, Oct 23 2019
Sum_{k=1..n} a(k) ~ n^4 / (8*zeta(3)). - Amiram Eldar, Jun 01 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997
Definition corrected by Mira Bernstein, May 30 2006