A001799 Coefficients of Legendre polynomials.
8, 72, 2160, 15504, 220248, 1564920, 89324640, 640807200, 9246847896, 67087213336, 1957095947664, 14342471475696, 211153052281080, 1560676296310488, 185256494416099008, 1379131680653181504, 20598677144877854232
Offset: 2
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 2..830
- H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.
Crossrefs
Cf. A001796.
Programs
-
Magma
B:=Binomial; A001799:= func< n | 144*B(n+2, 4)*Numerator(B(4*n, 2*n)/2^(4*n))/(5*B(2*n+5, 5)) >; [A001799(n): n in [2..30]]; // G. C. Greubel, Apr 24 2025
-
Maple
a:=n->(9*(2*n)*(2*n-2)/((2*n+1)*(2*n+3)*(2*n+5)))*numer(binomial(4*n,2*n)/2^(4*n)); # Sean A. Irvine, Nov 28 2012
-
Mathematica
A001799[n_]:= With[{B=Binomial}, 144*B[n+2,4]*Numerator[B[4*n,2*n]/2^(4*n)]/(5*B[2*n+ 5, 5])]; Table[A001799[n], {n,2,35}] (* G. C. Greubel, Apr 24 2025 *)
-
SageMath
b=binomial def A001799(n): return 144*b(n+2, 4)*numerator(b(4*n, 2*n)/2^(4*n))//(5*b(2*n+5, 5)) print([A001799(n) for n in range(2, 31)]) # G. C. Greubel, Apr 24 2025
Formula
a(n) = (9*(2*n)*(2*n-2)/((2*n+1)*(2*n+3)*(2*n+5))) * numerator(binomial(4*n, 2*n)/2^(4*n)). - Sean A. Irvine, Nov 28 2012
Extensions
More terms from Sean A. Irvine, Nov 28 2012
Comments