cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001811 Coefficients of Laguerre polynomials.

Original entry on oeis.org

1, 25, 450, 7350, 117600, 1905120, 31752000, 548856000, 9879408000, 185513328000, 3636061228800, 74373979680000, 1586644899840000, 35272336619520000, 816302647480320000, 19645683716026368000, 491142092900659200000, 12740803704070041600000
Offset: 4

Views

Author

Keywords

Examples

			G.f. = x^4 + 25*x^5 + 450*x^6 + 7350*x^7 + 117600*x^8 + 1905120*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..19) ; # Zerinvary Lajos, Feb 07 2008
  • Mathematica
    Table[n! n (n - 1) (n - 2) (n - 3)/(4!)^2, {n, 4, 20}] (* T. D. Noe, Aug 10 2012 *)
  • Sage
    [factorial(m) * binomial(m, 4) / 24 for m in range(4,19)] # Zerinvary Lajos, Jul 05 2008

Formula

a(n) = n!*n*(n-1)(n-2)(n-3)/(4!)^2. a(4)=1, a(n+1) = a(n) * (n+1)^2 / (n-3).
a(n) = A021009(n, 4), n >= 4.
E.g.f.: x^4/(4!*(1-x)^5).
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n) = (-1)^n*f(n,4,-5), (n >= 4). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 64*(Ei(1) - gamma - e) + 272/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 544*(gamma - Ei(-1)) - 320/e - 944/3, where Ei(-1) = -A099285. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Corrected by T. D. Noe, Aug 10 2012