cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001826 Number of divisors of n of the form 4k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 4, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 3, 1, 4, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 1, 2, 3, 2, 1, 2, 4, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 1, 2, 2, 3, 3, 2, 2, 1, 2, 4
Offset: 1

Views

Author

Keywords

Comments

Not multiplicative: a(21) <> a(3)*a(7), for example. - R. J. Mathar, Sep 15 2015

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 244.

Crossrefs

Programs

  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; # no. of divisors i of n with i == r mod m
    A001826 := proc(n)
        add(`if`(modp(d,4)=1,1,0),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := Count[Divisors[n], d_ /; Mod[d, 4] == 1]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 26 2013 *)
    a[n_] := DivisorSum[n, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d%4==1))

Formula

G.f.: Sum_{n>0} x^n/(1-x^(4n)) = Sum_{n>=0} x^(4n+1)/(1-x^(4n+1)).
a(n) = A001227(n) - A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,4) - (1 - gamma)/4 = A256778 - (1 - A001620)/4 = 0.604593... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

Extensions

Better definition from Michael Somos, Apr 26 2004