cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001839 The coding-theoretic function A(n,4,3).

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 8, 12, 13, 17, 20, 26, 28, 35, 37, 44, 48, 57, 60, 70, 73, 83, 88, 100, 104, 117, 121, 134, 140, 155, 160, 176, 181, 197, 204, 222, 228, 247, 253, 272, 280, 301, 308, 330, 337, 359, 368, 392, 400, 425, 433, 458, 468, 495, 504, 532, 541, 569, 580, 610, 620, 651, 661, 692, 704, 737, 748, 782, 793
Offset: 1

Views

Author

Keywords

Comments

Maximum number of edge-disjoint K_3's in a K_n.
Maximum number of clauses in a reduced 1 in 3 SAT instance. Given N items taken three at a time, what is the maximum number of combinations such that no two combinations share more than one item in common. There are reduction rules for 1 in 3 SAT that guarantee no two clauses share more than one variable in common. a(n) is the maximum number of clauses a reduced instance with n variables can have. Example: a(6)=4: (a,b,c)(a,d,e)(b,d,f)(c,e,f). - Russell Easterly, Oct 02 2005
Agrees with independence number of the n-tetrahedral graph for at least a(6)-a(12). - Eric W. Weisstein, Jun 14 2017 and Jul 24 2017
Packing number D(n,3,2). - Rob Pratt, Feb 26 2024

Examples

			Codes illustrating A(4,3,4) = a(3) = 1, A(5,3,4) = a(5) = 2 and A(6,3,4) = a(6) = 4 are:
   1110...11100..111000
   .......10011..100110
   ..............010101
   ..............001011
		

References

  • P. J. Cameron, Combinatorics, ..., Cambridge, 1994, see p. 121.
  • CRC Handbook of Combinatorial Designs, 1996, p. 411.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Floor[n Floor[(n - 1)/2]/3] - Boole[Mod[n, 6] == 5], {n, 20}] (* Eric W. Weisstein, Jul 13 2017 *)
    Table[(6 n^2 - 9 n - 10 - 3 (-1)^n (n - 2) - 6 Cos[n Pi/3] + 10 Cos[2 n Pi/3] + 10 Sqrt[3] Sin[n Pi/3] + 6 Sqrt[3] Sin[2 n Pi/3])/36, {n, 20}]  (* Eric W. Weisstein, Jul 13 2017 *)
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 1, 1, 2, 4, 7,
       8, 12}, 20] (* Eric W. Weisstein, Jul 13 2017 *)
    CoefficientList[Series[(x^2 (-1 - 2 x^3 - 2 x^4 + x^5))/((-1 + x)^3 (1 + x)^2 (1 - x + x^2) (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 13 2017 *)

Formula

Known exactly for all n - see Theorem 4 of Brouwer et al. (1990): A(n, 4, 3) = floor((n/3)*floor((n-1)/2))-1 if n is congruent to 5 (mod 6) and A(n, 4, 3) = floor((n/3)*floor((n-1)/2)) if n is not congruent to 5 (mod 6). - Shelly Jones (shellysalt(AT)yahoo.com), Apr 27 2004
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9). - Eric W. Weisstein, Jul 13 2017
G.f.: x^3*(x^5-2*x^4-2*x^3-1) / ((x-1)^3*(x+1)^2*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Sep 21 2013

Extensions

More terms from Shelly Jones (shellysalt(AT)yahoo.com), Apr 27 2004