cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001854 Total height of all rooted trees on n labeled nodes.

Original entry on oeis.org

0, 2, 15, 148, 1785, 26106, 449701, 8927192, 200847681, 5053782070, 140679853941, 4293235236324, 142553671807729, 5116962926162738, 197459475792232725, 8152354312656732976, 358585728464893234305, 16741214317684425260142, 826842457727306803110997, 43073414675338753123113980
Offset: 1

Views

Author

Keywords

Comments

Take any one of the n^(n-1) rooted trees on n labeled nodes, compute its height (maximal edge distance to root), sum over all trees.
Theorem [Renyi-Szekeres, (4,7)]. The average height if the tree is chosen at random is sqrt(2*n*Pi). - David desJardins, Jan 20 2017

References

  • Rényi, A., and G. Szekeres. "On the height of trees." Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also A234953(n) = a(n)/n.

Programs

  • Mathematica
    nn=20;a=NestList[ x Exp[#]&,x,nn];f[list_]:=Sum[list[[i]]*i,{i,1,Length[list]}];Drop[Map[f,Transpose[Table[Range[0,nn]!CoefficientList[Series[a[[i+1]]-a[[i]],{x,0,nn}],x],{i,1,nn-1}]]],1]  (* Geoffrey Critzer, Mar 14 2013 *)

Formula

a(n) = Sum_{k=1..n-1} A034855(n,k)*k. - Geoffrey Critzer, Mar 14 2013
A000435(n)/a(n) ~ 1/2 (see A000435 and the Renyi-Szekeres result mentioned in the Comments). - David desJardins, Jan 20 2017

Extensions

More terms from Geoffrey Critzer, Mar 14 2013