A001910 a(n) = n*a(n-1) + (n-5)*a(n-2).
0, 1, 5, 31, 227, 1909, 18089, 190435, 2203319, 27772873, 378673901, 5551390471, 87057596075, 1453986832381, 25762467303377, 482626240281739, 9530573107600319, 197850855756232465, 4307357140602486869, 98125321641110663023, 2334414826276390013171
Offset: 3
Keywords
Examples
Necklaces and 5 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1, binomial(4,3)*sf(3)*c5(1), (binomial(4,2)*sf(2))*c5(2), and 1*c5(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c5(n):=A001720(n+4) numbers for the pure 5 cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=5: 1/(1-x)^5). This adds up as 9 + 4*2*5 + (6*1)*30 + 1680 = 1909 = b(4) = A001910(8). - _Wolfdieter Lang_, Jun 02 2010
References
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 3..100
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), pp. 197-210.
Crossrefs
Programs
-
Maple
a := n -> `if`(n=3,0, hypergeom([6,-n+4],[],1))*(-1)^n; seq(round(evalf(a(n),100)), n=3..20); # Peter Luschny, Sep 20 2014
-
Mathematica
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] + (n - 5) t[[-2]]], {n, 5, 20}]; t (* T. D. Noe, Aug 17 2012 *)
Formula
a(n) = A086764(n+1,5), n>=3.
E.g.f. with offset -1: (exp(-x)/(1-x))*(1-x)^5 = exp(-x)/(1-x)^6. - Wolfdieter Lang, Jun 02 2010
G.f.: x*hypergeom([1,6],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
a(n) = hypergeometric([6,-n+4],[],1)*(-1)^n for n >=4. - Peter Luschny, Sep 20 2014
Comments