A001914 Cyclic numbers: 10 is a quadratic residue modulo p and class of mantissa is 2.
2, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, 601, 631, 653, 677, 683, 719, 761, 787, 827, 839, 877, 881, 883, 911, 919, 929, 947, 991
Offset: 1
Keywords
Examples
The repunit R(6)=111111 is the smallest repunit divisible by the prime a(2)=13=2*6+1.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966. Pages 65, 309.
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1180
Programs
-
PARI
R(n)=(10^n-1)/9; print1(2,", "); forprime(p=3, 1000, m=0; for(q=3, (p-1)/2-1, if(R(q)%p==0, m=1; break));if(m==0&&R((p-1)/2)%p==0, print1(p,", "))) \\ Hugo Pfoertner, Sep 18 2018
Extensions
More terms from Enoch Haga
Comments