A001913 Full reptend primes: primes with primitive root 10.
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983
Offset: 1
Examples
7 is in the sequence because 1/7 = 0.142857142857... and the period = 7-1 = 6.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
- Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 161.
- C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 380.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 115.
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
- H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), Ch. 19, 'Die periodischen Dezimalbrüche'.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- B. Chanco, Full Reptend Prime
- Sebastian M. Cioabă and Werner Linde, A Bridge to Advanced Mathematics: from Natural to Complex Numbers, Amer. Math. Soc. (2023) Vol. 58, see page 186.
- L. J. Goldstein, Density questions in algebraic number theory, Amer. Math. Monthly, 78 (1971), 342-349.
- Pieter Moree, Artin's primitive root conjecture - a survey
- Katsuya Mori, On a Certain Inverse Problem for Carousel Numbers, INTEGERS 20 (2020), #A77.
- OEIS Wiki, Full reptend primes
- Matt Parker and Brady Haran, The Reciprocals of Primes, Numberphile video (2022)
- Eric Weisstein's World of Mathematics, Cyclic Number.
- Eric Weisstein's World of Mathematics, Decimal Expansion.
- Eric Weisstein's World of Mathematics, Full Reptend Prime.
- D. Williams, Primitive Roots (Check) [Dead link]
- Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
- Index entries for primes by primitive root
- Index entries for sequences related to decimal expansion of 1/n
Crossrefs
Programs
-
Maple
A001913 := proc(n) local st, period: st := ithprime(n): period := numtheory[order](10,st): if (st-1 = period) then RETURN(st): fi: end: seq(A001913(n), n=1..200); # Jani Melik, Feb 25 2011
-
Mathematica
pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* Second program: *) Join[{7},Select[Prime[Range[300]],PrimitiveRoot[#,10]==10&]] (* Harvey P. Dale, Feb 01 2018 *)
-
PARI
forprime(p=7,1e3,if(znorder(Mod(10,p))+1==p,print1(p", "))) \\ Charles R Greathouse IV, Feb 27 2011
-
PARI
is(n)=Mod(10,n)^(n\2)==-1 && isprime(n) && znorder(Mod(10,n))+1==n \\ Charles R Greathouse IV, Oct 24 2013
-
Python
from itertools import count, islice from sympy import nextprime, n_order def A001913_gen(startvalue=1): # generator of terms >= startvalue p = max(startvalue-1,1) while (p:=nextprime(p)): if p!=2 and p!=5 and n_order(10,p)==p-1: yield p A001913_list = list(islice(A001913_gen(),20)) # Chai Wah Wu, Mar 03 2025
Comments