A086018 Number of cyclic numbers (A001913) <= 10^n.
0, 1, 9, 60, 467, 3617, 29500, 248881, 2155288, 19016617, 170169241, 1539964486, 14063663530, 129413160100
Offset: 0
Examples
a(1)=1 since 7 is the only cyclic number <= 10^1. a(2)=9 since the following are the cyclic numbers <= 10^2: 7, 17, 19, 23, 29, 47, 59, 61, 97.
Links
- Eric Weisstein's World of Mathematics, Cyclic Number
- Eric Weisstein's World of Mathematics, Full Reptend Prime
Programs
-
Mathematica
DigitCycleLength[ r_Rational, b_Integer?Positive ] := MultiplicativeOrder[ b, FixedPoint[ Quotient[ #, GCD[ #, b ] ] &, Denominator[ r ] ] ]; a = 0; Do[ If[ Prime[ n ] - DigitCycleLength[ 1/Prime[ n ], 10 ] == 1, a++ ], {n, 2, PrimePi[ 10^7 ]} ] Print[ a ]
Formula
Conjectured ratio a(n)/A006880(n) as n->infinity is Artin's constant 0.3739558136...
Extensions
a(11)-a(13) from Hiroaki Yamanouchi, Oct 10 2015
Comments