cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A002371 Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).

Original entry on oeis.org

0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96, 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228, 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, 141, 146, 153, 155, 312, 79, 110
Offset: 1

Views

Author

Keywords

Comments

a(n) is the minimum solution x of modular equation 10^x == 1 (mod p), where p = prime(n). - Carmine Suriano, Oct 10 2012
a(n) = smallest m such that 111...11 (m 1's) is divisible by the n-th prime, or 0 if no such m exists (with the exception that a(2) = 3 instead of 1). E.g., the 5th prime, 11, divides 11, so a(5) = 2. - N. J. A. Sloane, Oct 03 2013 [Comment corrected by Derek Orr, Jun 14 2014]
Numbers n such that A071126(n) = A000040(n) - 1. - Hugo Pfoertner, Mar 18 2003
Except for n = 1 and 3, a(n) divides A006093(n). - Robert Israel, Jul 15 2016

Examples

			A002371(11) = 15 because the 11th prime is 31, and 1/31 = 0.03225806451612903225806451612903225806452... has period 15. - _Richard F. Lyon_, Mar 29 2022
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309. ISBN 0-486-21096-0.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, 1996, p. 162. ISBN 978-0-387-97993-9.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A048595 for another version. Cf. A006883, A007732, A051626, A071126, A000040, A002275, A097443.
Cf. A001913 (full repetend primes), A060257 (1/prime(n) has period prime(n) - 1).

Programs

  • Maple
    seq(subs(FAIL=0,numtheory:-order(10, ithprime(n))),n=1..100); # Robert Israel, Jul 15 2016
  • Mathematica
    Table[ Length[ RealDigits[1 / Prime[n]] [[1, 1]]], {n, 1, 70}]
    Table[If[IntegerQ[#], #, 0] &[MultiplicativeOrder[10, Prime[n]]], {n, 1, 70}] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    a(n)=if(n<4,n==2,znorder(Mod(10, prime(n))))
    
  • Python
    from sympy import prime, n_order
    def A002371(n): return 0 if n == 1 or n == 3 else n_order(10,prime(n)) # Chai Wah Wu, Feb 07 2022

Formula

From Alexander Adamchuk, Jan 28 2007: (Start)
a(A000720(p)) = p - 1 for primes p in A001913.
a(A060257(n)) = prime(A060257(n)) - 1. (End)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)
Edited by Charles R Greathouse IV, Mar 24 2010

A051626 Period of decimal representation of 1/n, or 0 if 1/n terminates.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0, 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 0, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1

Views

Author

Keywords

Comments

Essentially same as A007732.
For any prime number p: if a(p) > 0, a(p) divides p-1. - David Spitzer, Jan 09 2017

Examples

			From _M. F. Hasler_, Dec 14 2015: (Start)
a(1) = a(2) = 0 because 1/1 = 1 and 1/2 = 0.5 have a finite decimal expansion.
a(3) = a(6) = a(9) = a(12) = 1 because 1/3 = 0.{3}*, 1/6 = 0.1{6}*, 1/9 = 0.{1}*, 1/12 = 0.08{3}* where the sequence of digits {...}* which repeats indefinitely is of length 1.
a(7) = 6 because 1/7 = 0.{142857}* with a period of 6.
a(17) = 16 because 1/17 = 0.{0588235294117647}* with a period of 16.
a(19) = 18 because 1/19 = 0.{052631578947368421}* with a period of 18. (End)
		

Crossrefs

Essentially same as A007732. Cf. A002371, A048595, A006883, A036275, A114205, A114206, A001913.

Programs

  • Maple
    A051626 := proc(n) local lpow,mpow ;
        if isA003592(n) then
           RETURN(0) ;
        else
           lpow:=1 ;
           while true do
              for mpow from lpow-1 to 0 by -1 do
                  if (10^lpow-10^mpow) mod n =0 then
                     RETURN(lpow-mpow) ;
                  fi ;
              od ;
              lpow := lpow+1 ;
           od ;
        fi ;
    end: # R. J. Mathar, Oct 19 2006
  • Mathematica
    r[x_]:=RealDigits[1/x]; w[x_]:=First[r[x]]; f[x_]:=First[w[x]]; l[x_]:=Last[w[x]]; z[x_]:=Last[r[x]];
    d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]; Table[d[i], {i,1,90}] (* Hans Havermann, Oct 19 2006 *)
    fd[n_] := Block[{q},q = Last[First[RealDigits[1/n]]];If[IntegerQ[q], q = {}]; Length[q]];Table[fd[n], {n, 100}] (* Ray Chandler, Dec 06 2006 *)
    Table[Length[RealDigits[1/n][[1,-1]]],{n,90}] (* Harvey P. Dale, Jul 03 2011 *)
    a[n_] := If[ PowerMod[10, n, n] == 0, 0, MultiplicativeOrder[10, n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]]]; Array[a, 90] (* myself in A003592 and T. D. Noe in A007732 *) (* Robert G. Wilson v, Feb 20 2025 *)
  • PARI
    A051626(n)=if(1M. F. Hasler, Dec 14 2015
    
  • Python
    def A051626(n):
        if isA003592(n):
            return 0
        else:
            lpow=1
            while True:
                for mpow in range(lpow-1,-1,-1):
                    if (10**lpow-10**mpow) % n == 0:
                        return lpow-mpow
                lpow += 1 # Kenneth Myers, May 06 2016
    
  • Python
    from sympy import multiplicity, n_order
    def A051626(n): return 0 if (m:=(n>>(~n & n-1).bit_length())//5**multiplicity(5,n)) == 1 else n_order(10,m) # Chai Wah Wu, Aug 11 2022

Formula

a(n)=A132726(n,1); a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=0. - Reinhard Zumkeller, Aug 27 2007

Extensions

More terms from James Sellers

A036275 The periodic part of the decimal expansion of 1/n. Any initial 0's are to be placed at end of cycle.

Original entry on oeis.org

0, 0, 3, 0, 0, 6, 142857, 0, 1, 0, 90, 3, 769230, 714285, 6, 0, 5882352941176470, 5, 526315789473684210, 0, 476190, 45, 4347826086956521739130, 6, 0, 384615, 370, 571428, 3448275862068965517241379310, 3, 322580645161290, 0, 30, 2941176470588235, 285714, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 iff n = 2^i*5^j (A003592). - Jon Perry, Nov 19 2014
a(n) = n iff n = 3 or 6 (see De Koninck & Mercier reference). - Bernard Schott, Dec 02 2020

Examples

			1/28 = .03571428571428571428571428571428571428571... and digit-cycle is 571428, so a(28)=571428.
		

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 347 pp. 50 and 205, Ellipses, Paris, 2004.

Crossrefs

Programs

  • Maple
    isCycl := proc(n) local ifa,i ; if n <= 2 then RETURN(false) ; fi ; ifa := ifactors(n)[2] ; for i from 1 to nops(ifa) do if op(1,op(i,ifa)) <> 2 and op(1,op(i,ifa)) <> 5 then RETURN(true) ; fi ; od ; RETURN(false) ; end: A036275 := proc(n) local ifa,sh,lpow,mpow,r ; if not isCycl(n) then RETURN(0) ; else lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then r := (10^lpow-10^mpow)/n ; r := r mod (10^(lpow-mpow)-1) ; while r*10 < 10^(lpow-mpow) do r := 10*r ; od ; RETURN(r) ; fi ; od ; lpow := lpow+1 ; od ; fi ; end: for n from 1 to 60 do printf("%d %d ",n,A036275(n)) ; od ; # R. J. Mathar, Oct 19 2006
  • Mathematica
    fc[n_]:=Block[{q=RealDigits[1/n][[1,-1]]},If[IntegerQ[q],0,While[First[q]==0,q=RotateLeft[q]];FromDigits[q]]];
    Table[fc[n],{n,36}] (* Ray Chandler, Nov 19 2014, corrected Jun 27 2017 *)
    Table[FromDigits[FindTransientRepeat[RealDigits[1/n,10,120][[1]],3] [[2]]],{n,40}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2019 *)

Extensions

Corrected and extended by N. J. A. Sloane
Corrected a(92), a(208), a(248), a(328), a(352) and a(488) which missed a trailing zero (see the table). - Philippe Guglielmetti, Jun 20 2017

A097443 Half-period primes, i.e., primes p for which the decimal expansion of 1/p has period (p-1)/2.

Original entry on oeis.org

3, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, 601, 631, 653, 677, 683, 719, 761, 787, 827, 839, 877, 881, 883, 911, 919, 929, 947, 991
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Aug 23 2004

Keywords

Comments

Primes p for which 10 has multiplicative order (p-1)/2. - Robert Israel, Jul 15 2016

Examples

			13 is a half-period prime because 1/13 = 0.076923076923076923076923..., which has period 6, or (13-1)/2.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and numtheory:-order(10, t) = (t-1)/2,
    [seq(t,t = 3..1000,2)]); # Robert Israel, Jul 15 2016
  • Mathematica
    f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 200]], f[ # ] == 2 &] (* Robert G. Wilson v, Sep 14 2004 *)
  • PARI
    is(n)= gcd(10,n)==1 && isprime(n) && znorder(Mod(10,n))==(n-1)/2 \\ Dana Jacobsen, Jul 19 2016
    
  • Perl
    use ntheory ":all"; forprimes { say if znorder(10,$) == ($-1)/2; } 1,1000; # Dana Jacobsen, Jul 19 2016

Extensions

Edited (including prepending 3), at the suggestion of Georg Fischer, by N. J. A. Sloane, Oct 19 2018

A040017 Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime) of the form A019328(r)/gcd(A019328(r),r) in order (periods r are given in A051627).

Original entry on oeis.org

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991, 909090909090909090909090909091
Offset: 1

Views

Author

Keywords

Comments

Prime p=3 is the only known example of a unique period prime such that A019328(r)/gcd(A019328(r),r) = p^k with k > 1 (cf. A323748). It is plausible to assume that no other such prime exists. Under this (unproved) assumption, the current sequence lists all unique period primes in order and represents a sorted version of A007615. - Max Alekseyev, Oct 14 2022

Examples

			The decimal expansion of 1/101 is 0.00990099..., having a period of 4 and it is the only prime with that period.
		

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 324, Pour la Science Paris 2000.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[c = Cyclotomic[n, 10]; q = c/GCD[c, n]; If[PrimeQ[q], AppendTo[lst, q]], {n, 62}]; Prepend[Sort[lst], 3] (* Arkadiusz Wesolowski, May 13 2012 *)

Formula

For n >= 2, a(n) = A019328(r) / gcd(A019328(r), r), where r = A051627(n). - Max Alekseyev, Oct 14 2022

Extensions

Missing term a(45) inserted in b-file at the suggestion of Eric Chen by Max Alekseyev, Oct 13 2022
Edited by Max Alekseyev, Oct 14 2022

A054710 Number of powers of 10 mod n.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 6, 4, 1, 2, 2, 3, 6, 7, 2, 5, 16, 2, 18, 3, 6, 3, 22, 4, 3, 7, 3, 8, 28, 2, 15, 6, 2, 17, 7, 3, 3, 19, 6, 4, 5, 7, 21, 4, 2, 23, 46, 5, 42, 3, 16, 8, 13, 4, 3, 9, 18, 29, 58, 3, 60, 16, 6, 7, 7, 3, 33, 18, 22, 7, 35, 4, 8, 4, 3, 20, 6, 7, 13, 5, 9, 6, 41, 8, 17, 22, 28, 5, 44, 2
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    Table[Length[Union[PowerMod[10, Range[0,n], n]]], {n,100}] (* T. D. Noe, Aug 30 2006 *)
    a[n_] := Module[{e = IntegerExponent[n, {2, 5}]}, Max[e] + MultiplicativeOrder[10, n/Times @@ ({2, 5}^e)]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007732(n) + A051628(n). - Amiram Eldar, Aug 25 2024

A132740 Largest divisor of n coprime to 10.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 11, 3, 13, 7, 3, 1, 17, 9, 19, 1, 21, 11, 23, 3, 1, 13, 27, 7, 29, 3, 31, 1, 33, 17, 7, 9, 37, 19, 39, 1, 41, 21, 43, 11, 9, 23, 47, 3, 49, 1, 51, 13, 53, 27, 11, 7, 57, 29, 59, 3, 61, 31, 63, 1, 13, 33, 67, 17, 69, 7, 71, 9, 73, 37, 3, 19, 77, 39, 79, 1, 81
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

Or: n with all factors of 2 and 5 removed. - M. F. Hasler, Apr 25 2017

Examples

			a(1050) = a(2*3*5*5*7) = 3*7 = 21.
		

Crossrefs

Programs

Formula

a(n) = A000265(A132739(n)) = A132739(A000265(n)) = n / A132741(n);
A051626(a(n)) = A051626(n); A007732(a(n)) = A007732(n);
a(A003592(n)) = 1.
Multiplicative with a(2^e) = 1, a(5^e) = 1 and a(p^e) = p^e for p = 3 and p >= 7.
Dirichlet g.f. zeta(s-1)*(2^s-2)*(5^s-5)/((2^s-1)*(5^s-1)). - R. J. Mathar, Sep 06 2011
Sum_{k=1..n} a(k) ~ (5/18) * n^2. - Amiram Eldar, Nov 28 2022

Extensions

Edited by M. F. Hasler, Apr 25 2017

A007498 Unique period lengths of primes mentioned in A007615.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 294, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, 4274, 4354
Offset: 1

Views

Author

Keywords

Comments

Let {Zs(m, 10, 1)} be the Zsigmondy numbers for a = 10, b = 1: Zs(m, 10, 1) is the greatest divisor of 10^m - 1^m that is coprime to 10^r - 1^r for all positive integers r < m. Then this sequence gives m such that Zs(m, 10, 1) is a prime power (e.g., Zs(1, 10, 1) = 9 = 3^2, Zs(2, 10, 1) = 11, Zs(3, 10, 1) = 37, Zs(4, 10, 1) = 101). It is very likely that Zs(m, 10, 1) is prime if m > 1 is in this sequence (note that the Mathematica and PARI programs below are based on this assumption). - Jianing Song, Aug 12 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24.

Crossrefs

Cf. A161508 (unique period lengths in base 2).

Programs

  • Mathematica
    lst={1}; Do[p=Cyclotomic[n, 10]/GCD[n, Cyclotomic[n, 10]]; If[PrimeQ[p], AppendTo[lst, n]], {n, 3000}]; lst (* T. D. Noe, Sep 08 2005 *)
  • PARI
    isok(n) = if (n==1, 1, my(p = polcyclo(n, 10)); isprime(p/gcd(p, n))); \\ Michel Marcus, Jun 20 2018

Extensions

More terms from T. D. Noe, Sep 08 2005
a(48)-a(52) from Ray Chandler, Jul 09 2008

A084680 Order of 10 modulo n [i.e., least m such that 10^m = 1 (mod n)] or 0 when no such number exists.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 6, 0, 1, 0, 2, 0, 6, 0, 0, 0, 16, 0, 18, 0, 6, 0, 22, 0, 0, 0, 3, 0, 28, 0, 15, 0, 2, 0, 0, 0, 3, 0, 6, 0, 5, 0, 21, 0, 0, 0, 46, 0, 42, 0, 16, 0, 13, 0, 0, 0, 18, 0, 58, 0, 60, 0, 6, 0, 0, 0, 33, 0, 22, 0, 35, 0, 8, 0, 0, 0, 6, 0, 13, 0, 9, 0, 41, 0, 0, 0, 28, 0, 44, 0, 6, 0, 15, 0, 0, 0
Offset: 1

Views

Author

Lekraj Beedassy, Jun 30 2003

Keywords

Comments

When n is not divisible by 2 or 5, a(n) = A007732(n). A002329 contains the nonzero terms.
A number k > 0 appears in this sequence exactly A059892(k) times. - T. D. Noe, May 18 2007

Crossrefs

Programs

  • GAP
    List([1..100],n->OrderMod(10,n)); # Muniru A Asiru, Feb 26 2019
  • Maple
    A084680 := proc(n) if gcd(n,10) <> 1 then 0 ; elif n = 1 then 1 ; else numtheory[order](10,n) ; end if; end proc: seq(A084680(n),n=2..100) ; # R. J. Mathar, Mar 10 2010
  • Mathematica
    a[n_] := If[!CoprimeQ[n, 10], 0, MultiplicativeOrder[10, n]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 07 2012 *)
  • PARI
    a(n,b=10)=if(gcd(n,b)!=1,0,znorder(Mod(b,n)));
    vector(66,n,a(n)) \\ Joerg Arndt, Nov 15 2014
    

Extensions

More terms from John W. Layman, Aug 12 2003

A132741 Largest divisor of n having the form 2^i*5^j.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 16, 1, 2, 1, 20, 1, 2, 1, 8, 25, 2, 1, 4, 1, 10, 1, 32, 1, 2, 5, 4, 1, 2, 1, 40, 1, 2, 1, 4, 5, 2, 1, 16, 1, 50, 1, 4, 1, 2, 5, 8, 1, 2, 1, 20, 1, 2, 1, 64, 5, 2, 1, 4, 1, 10, 1, 8, 1, 2, 25, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 32, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

The range of this sequence, { a(n); n>=0 }, is equal to A003592. - M. F. Hasler, Dec 28 2015

Crossrefs

Cf. A379003 (ordinal transform), A379004 (rgs-transform).
Cf. also A355582.

Programs

  • Haskell
    a132741 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 5 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Maple
    A132741 := proc(n) local f,a; f := ifactors(n)[2] ; a := 1; for f in ifactors(n)[2] do if op(1,f) =2 then a := a*2^op(2,f) ; elif op(1,f) =5 then a := a*5^op(2,f) ; end if; end do;a; end proc: # R. J. Mathar, Sep 06 2011
  • Mathematica
    a[n_] := SelectFirst[Reverse[Divisors[n]], MatchQ[FactorInteger[#], {{1, 1}} | {{2, }} | {{5, }} | {{2, }, {5, }}]&]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
    a[n_] := Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    A132741(n)=5^valuation(n,5)<M. F. Hasler, Dec 28 2015

Formula

a(n) = n / A132740(n).
a(A003592(n)) = A003592(n).
A051626(a(n)) = 0.
A007732(a(n)) = 1.
From R. J. Mathar, Sep 06 2011: (Start)
Multiplicative with a(2^e)=2^e, a(5^e)=5^e and a(p^e)=1 for p=3 or p>=7.
Dirichlet g.f. zeta(s)*(2^s-1)*(5^s-1)/((2^s-2)*(5^s-5)). (End)
a(n) = A006519(n)*A060904(n) = 2^A007814(n)*5^A112765(n). - M. F. Hasler, Dec 28 2015
Sum_{k=1..n} a(k) ~ n*(12*log(n)^2 + (24*gamma + 36*log(2) - 24)*log(n) + 24 - 24*gamma - 36*log(2) + 36*gamma*log(2) + 2*log(2)^2 - 18*log(5) + 18*gamma*log(5) + 27*log(2)*log(5) + 2*log(5)^2 + 18*log(5)*log(n) - 24*gamma_1)/(60*log(2)*log(5)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023
Showing 1-10 of 47 results. Next