cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A003592 Numbers of the form 2^i*5^j with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800
Offset: 1

Views

Author

Keywords

Comments

These are the natural numbers whose reciprocals are terminating decimals. - David Wasserman, Feb 26 2002
A132726(a(n), k) = 0 for k <= a(n); A051626(a(n)) = 0; A132740(a(n)) = 1; A132741(a(n)) = a(n). - Reinhard Zumkeller, Aug 27 2007
Where record values greater than 1 occur in A165706: A165707(n) = A165706(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also numbers that are divisible by neither 10k - 7, 10k - 3, 10k - 1 nor 10k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
A204455(5*a(n)) = 5, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
Since p = 2 and q = 5 are coprime, sum_{n >= 1} 1/a(n) = sum_{i >= 0} sum_{j >= 0} 1/p^i * 1/q^j = sum_{i >= 0} 1/p^i q/(q - 1) = p*q/((p-1)*(q-1)) = 2*5/(1*4) = 2.5. - Franklin T. Adams-Watters, Jul 07 2014
Conjecture: Each positive integer n not among 1, 4 and 12 can be written as a sum of finitely many numbers of the form 2^a*5^b + 1 (a,b >= 0) with no one dividing another. This has been verified for n <= 3700. - Zhi-Wei Sun, Apr 18 2023
1,2 and 4,5 are the only consecutive terms in the sequence. - Robin Jones, May 03 2025

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 73.

Crossrefs

Complement of A085837. Cf. A094958, A022333 (list of j), A022332 (list of i).
Cf. A164768 (difference between consecutive terms)

Programs

  • GAP
    Filtered([1..10000],n->PowerMod(10,n,n)=0); # Muniru A Asiru, Mar 19 2019
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003592 n = a003592_list !! (n-1)
    a003592_list = f $ singleton 1 where
       f s = y : f (insert (2 * y) $ insert (5 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..10000] | PrimeDivisors(n) subset [2,5]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    isA003592 := proc(n)
          if n = 1 then
            true;
        else
            return (numtheory[factorset](n) minus {2,5} = {} );
        end if;
    end proc:
    A003592 := proc(n)
         option remember;
         if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA003592(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jul 16 2012
  • Mathematica
    twoFiveableQ[n_] := PowerMod[10, n, n] == 0; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Jan 12 2012 *)
    twoFiveableQ[n_] := Union[ MemberQ[{1, 3, 7, 9}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 10]] == {False}; twoFiveableQ[1] = True; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Oct 26 2010 *)
    maxExpo = 14; Sort@ Flatten@ Table[2^i * 5^j, {i, 0, maxExpo}, {j, 0, Log[5, 2^(maxExpo - i)]}] (* Or *)
    Union@ Flatten@ NestList[{2#, 4#, 5#} &, 1, 7] (* Robert G. Wilson v, Apr 16 2011 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim+.5)\log(5),N=5^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    # A003592.py
    from heapq import heappush, heappop
    def A003592():
        pq = [1]
        seen = set(pq)
        while True:
            value = heappop(pq)
            yield value
            seen.remove(value)
            for x in 2*value, 5*value:
                if x not in seen:
                    heappush(pq, x)
                    seen.add(x)
    sequence = A003592()
    A003592_list = [next(sequence) for _ in range(100)]
    
  • Python
    from sympy import integer_log
    def A003592(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//5**i).bit_length() for i in range(integer_log(x,5)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025
    
  • Sage
    def isA003592(n) :
        return not any(d != 2 and d != 5 for d in prime_divisors(n))
    @CachedFunction
    def A003592(n) :
        if n == 1 : return 1
        k = A003592(n-1) + 1
        while not isA003592(k) : k += 1
        return k
    [A003592(n) for n in (1..48)]  # Peter Luschny, Jul 20 2012
    

Formula

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(10*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
a(n) ~ exp(sqrt(2*log(2)*log(5)*n)) / sqrt(10). - Vaclav Kotesovec, Sep 22 2020
a(n) = 2^A022332(n) * 5^A022333(n). - R. J. Mathar, Jul 06 2025

Extensions

Incomplete Python program removed by David Radcliffe, Jun 27 2016

A007732 Period of decimal representation of 1/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 6, 6, 1, 1, 16, 1, 18, 1, 6, 2, 22, 1, 1, 6, 3, 6, 28, 1, 15, 1, 2, 16, 6, 1, 3, 18, 6, 1, 5, 6, 21, 2, 1, 22, 46, 1, 42, 1, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 1, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 1, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson [ hals(AT)easynet.com ]

Keywords

Comments

Appears to be a divisor of A007733*A007736. - Henry Bottomley, Dec 20 2001
Primes p such that a(p) = p-1 are in A001913. - Dmitry Kamenetsky, Nov 13 2008
When 1/n has a finite decimal expansion (namely, when n = 2^a*5^b), a(n) = 1 while A051626(n) = 0. - M. F. Hasler, Dec 14 2015
a(n.n) >= a(n) where n.n is A020338(n). - Davide Rotondo, Jun 13 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 159 etc.

Crossrefs

Programs

  • Maple
    A007732 := proc(n)
        a132740 := 1 ;
        for pe in ifactors(n)[2] do
            if not op(1,pe) in {2,5} then
                a132740 := a132740*op(1,pe)^op(2,pe) ;
            end if;
        end do:
        if a132740 = 1 then
            1 ;
        else
            numtheory[order](10,a132740) ;
        end if;
    end proc:
    seq(A007732(n),n=1..50) ; # R. J. Mathar, May 05 2023
  • Mathematica
    Table[r = n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]; MultiplicativeOrder[10, r], {n, 100}] (* T. D. Noe, Oct 17 2012 *)
  • PARI
    a(n)=znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))) \\ Charles R Greathouse IV, Jan 14 2013
    
  • Python
    from sympy import n_order, multiplicity
    def A007732(n): return n_order(10,n//2**multiplicity(2,n)//5**multiplicity(5,n)) # Chai Wah Wu, Feb 07 2022
  • Sage
    def a(n):
        n = ZZ(n)
        rad = 2**n.valuation(2) * 5**n.valuation(5)
        return Zmod(n // rad)(10).multiplicative_order()
    [a(n) for n in range(1, 20)]
    # F. Chapoton, May 03 2020
    

Formula

Note that if n=r*s where r is a power of 2 and s is odd then a(n)=a(s). Also if n=r*s where r is a power of 5 and s is not divisible by 5 then a(n) = a(s). So we just need a(n) for n not divisible by 2 or 5. This is the smallest number m such that n divides 10^m - 1; m is a divisor of phi(n), where phi = A000010.
phi(n) = n-1 only if n is prime and since a(n) divides phi(n), a(n) can only equal n-1 if n is prime. - Scott Hemphill (hemphill(AT)alumni.caltech.edu), Nov 23 2006
a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=1. - Reinhard Zumkeller, Aug 27 2007

Extensions

More terms from James Sellers, Feb 05 2000

A051626 Period of decimal representation of 1/n, or 0 if 1/n terminates.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 6, 0, 1, 0, 2, 1, 6, 6, 1, 0, 16, 1, 18, 0, 6, 2, 22, 1, 0, 6, 3, 6, 28, 1, 15, 0, 2, 16, 6, 1, 3, 18, 6, 0, 5, 6, 21, 2, 1, 22, 46, 1, 42, 0, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 0, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 0, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1

Views

Author

Keywords

Comments

Essentially same as A007732.
For any prime number p: if a(p) > 0, a(p) divides p-1. - David Spitzer, Jan 09 2017

Examples

			From _M. F. Hasler_, Dec 14 2015: (Start)
a(1) = a(2) = 0 because 1/1 = 1 and 1/2 = 0.5 have a finite decimal expansion.
a(3) = a(6) = a(9) = a(12) = 1 because 1/3 = 0.{3}*, 1/6 = 0.1{6}*, 1/9 = 0.{1}*, 1/12 = 0.08{3}* where the sequence of digits {...}* which repeats indefinitely is of length 1.
a(7) = 6 because 1/7 = 0.{142857}* with a period of 6.
a(17) = 16 because 1/17 = 0.{0588235294117647}* with a period of 16.
a(19) = 18 because 1/19 = 0.{052631578947368421}* with a period of 18. (End)
		

Crossrefs

Essentially same as A007732. Cf. A002371, A048595, A006883, A036275, A114205, A114206, A001913.

Programs

  • Maple
    A051626 := proc(n) local lpow,mpow ;
        if isA003592(n) then
           RETURN(0) ;
        else
           lpow:=1 ;
           while true do
              for mpow from lpow-1 to 0 by -1 do
                  if (10^lpow-10^mpow) mod n =0 then
                     RETURN(lpow-mpow) ;
                  fi ;
              od ;
              lpow := lpow+1 ;
           od ;
        fi ;
    end: # R. J. Mathar, Oct 19 2006
  • Mathematica
    r[x_]:=RealDigits[1/x]; w[x_]:=First[r[x]]; f[x_]:=First[w[x]]; l[x_]:=Last[w[x]]; z[x_]:=Last[r[x]];
    d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]; Table[d[i], {i,1,90}] (* Hans Havermann, Oct 19 2006 *)
    fd[n_] := Block[{q},q = Last[First[RealDigits[1/n]]];If[IntegerQ[q], q = {}]; Length[q]];Table[fd[n], {n, 100}] (* Ray Chandler, Dec 06 2006 *)
    Table[Length[RealDigits[1/n][[1,-1]]],{n,90}] (* Harvey P. Dale, Jul 03 2011 *)
    a[n_] := If[ PowerMod[10, n, n] == 0, 0, MultiplicativeOrder[10, n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]]]; Array[a, 90] (* myself in A003592 and T. D. Noe in A007732 *) (* Robert G. Wilson v, Feb 20 2025 *)
  • PARI
    A051626(n)=if(1M. F. Hasler, Dec 14 2015
    
  • Python
    def A051626(n):
        if isA003592(n):
            return 0
        else:
            lpow=1
            while True:
                for mpow in range(lpow-1,-1,-1):
                    if (10**lpow-10**mpow) % n == 0:
                        return lpow-mpow
                lpow += 1 # Kenneth Myers, May 06 2016
    
  • Python
    from sympy import multiplicity, n_order
    def A051626(n): return 0 if (m:=(n>>(~n & n-1).bit_length())//5**multiplicity(5,n)) == 1 else n_order(10,m) # Chai Wah Wu, Aug 11 2022

Formula

a(n)=A132726(n,1); a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=0. - Reinhard Zumkeller, Aug 27 2007

Extensions

More terms from James Sellers

A008904 a(n) is the final nonzero digit of n!.

Original entry on oeis.org

1, 1, 2, 6, 4, 2, 2, 4, 2, 8, 8, 8, 6, 8, 2, 8, 8, 6, 8, 2, 4, 4, 8, 4, 6, 4, 4, 8, 4, 6, 8, 8, 6, 8, 2, 2, 2, 4, 2, 8, 2, 2, 4, 2, 8, 6, 6, 2, 6, 4, 2, 2, 4, 2, 8, 4, 4, 8, 4, 6, 6, 6, 2, 6, 4, 6, 6, 2, 6, 4, 8, 8, 6, 8, 2, 4, 4, 8, 4, 6, 8, 8, 6, 8, 2, 2, 2, 4, 2, 8, 2, 2, 4, 2, 8, 6, 6, 2, 6
Offset: 0

Views

Author

Keywords

Comments

This sequence is not ultimately periodic. This can be deduced from the fact that the sequence can be obtained as a fixed point of a morphism. - Jean-Paul Allouche, Jul 25 2001
The decimal number 0.1126422428... formed from these digits is a transcendental number; see the article by G. Dresden. The Mathematica code uses Dresden's formula for the last nonzero digit of n!; this is more efficient than simply calculating n! and then taking its least-significant digit. - Greg Dresden, Feb 21 2006
From Robert G. Wilson v, Feb 16 2011: (Start)
(mod 10) == 2 4 6 8
10^
1 4 2 1 1
2 28 23 22 25
3 248 247 260 243
4 2509 2486 2494 2509
5 25026 24999 24972 25001
6 249993 250012 250040 249953
7 2500003 2499972 2499945 2500078
8 25000078 24999872 25000045 25000003
9 249999807 250000018 250000466 249999707 (End)

Examples

			6! = 720, so a(6) = 2.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 202.
  • Gardner, M. "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978
  • S. Kakutani, Ergodic theory of shift transformations, in Proc. 5th Berkeley Symp. Math. Stat. Prob., Univ. Calif. Press, vol. II, 1967, 405-414.
  • Popular Computing (Calabasas, CA), Problem 120, Factorials, Vol. 4 (No. 36, Mar 1976), page PC36-3.

Crossrefs

Programs

  • Haskell
    a008904 n = a008904_list !! n
    a008904_list = 1 : 1 : f 2 1 where
       f n x = x' `mod` 10 : f (n+1) x' where
          x' = g (n * x) where
             g m | m `mod` 5 > 0 = m
                 | otherwise     = g (m `div` 10)
    -- Reinhard Zumkeller, Apr 08 2011
  • Mathematica
    f[n_]:=Module[{m=n!},While[Mod[m,10]==0,m=m/10];Mod[m,10]]
    Table[f[i],{i,0,100}]
    f[n_] := Mod[6Times @@ (Rest[FoldList[{ 1 + #1[[1]], #2!2^(#1[[1]]#2)} &, {0, 0}, Reverse[IntegerDigits[n, 5]]]]), 10][[2]]; Join[{1, 1}, Table[f[n], {n, 2, 100}]] (* program contributed by Jacob A. Siehler, Greg Dresden, Feb 21 2006 *)
    zOF[n_Integer?Positive] := Module[{maxpow=0}, While[5^maxpow<=n,maxpow++]; Plus@@Table[Quotient[n,5^i], {i,maxpow-1}]]; Flatten[Table[ Take[ IntegerDigits[ n!], {-zOF[n]-1}],{n,100}]] (* Harvey P. Dale, Dec 16 2010 *)
    f[n_]:=Block[{id=IntegerDigits[n!, 10]}, While[id[[-1]]==0, id=Most@id]; id[[-1]]]; Table[f@n, {n, 0, 100}] (* Vincenzo Librandi, Sep 07 2017 *)
  • PARI
    a(n) = r=1; while(n>0, r *= Mod(4, 10)^((n\10)%2) * [1, 2, 6, 4, 2, 2, 4, 2, 8][max(n%10, 1)]; n\=5); lift(r) \\ Charles R Greathouse IV, Nov 05 2010; cleaned up by Max Alekseyev, Jan 28 2012
    
  • Python
    def a(n):
        if n <= 1: return 1
        return 6*[1,1,2,6,4,4,4,8,4,6][n%10]*3**(n/5%4)*a(n/5)%10
    # Maciej Ireneusz Wilczynski, Aug 23 2010
    
  • Python
    from functools import reduce
    from sympy.ntheory.factor_ import digits
    def A008904(n): return reduce(lambda x,y:x*y%10,(((6,2,4,8,6,2,4,8,2,4,8,6,6,2,4,8,4,8,6,2)[(a<<2)|(i*a&3)] if i*a else (1,1,2,6,4)[a]) for i, a in enumerate(digits(n,5)[-1:0:-1])),6) if n>1 else 1 # Chai Wah Wu, Dec 07 2023
    
  • Sage
    def A008904(n):
        # algorithm from David Wilson, http://oeis.org/A008904/a008904b.txt
        if n == 0 or n == 1: return 1
        dd = n.digits(base=5)
        x = sum(i*d for i,d in enumerate(dd))
        y = sum(d for d in dd if d % 2 == 0)/2
        z = 2**((x+y) % 4)
        if z == 1: z = 6
        return z # D. S. McNeil, Dec 09 2010
    

Formula

The generating function for n>1 is as follows: for n = a_0 + 5*a_1 + 5^2*a_2 + ... + 5^N*a_N (the expansion of n in base-5), then the last nonzero digit of n!, for n>1, is 6*Product_{i=0..N} (a_i)! (2^(i a_i)) mod 10. - Greg Dresden, Feb 21 2006
a(n) = f(n,1,0) with f(n,x,e) = if n < 2 then A010879(x*A000079(e)) else f(n-1, A010879(x)*A132740(n), e+A007814(n)-A112765(n)). - Reinhard Zumkeller, Aug 16 2008
From Washington Bomfim, Jan 09 2011: (Start)
a(0) = 1, a(1) = 1, if n >= 2, with
n represented in base 5 as (a_h, ..., a_1, a_0)_5,
t = Sum_{i = h, h-1, ... , 0} (a_i even),
x = Sum_{i=h, h-1, ... , 1} (Sum_{k=h, h-1, ..., i}(a_i)),
z = (x + t/2) mod 4, and y = 2^z,
a(n) = 6*(y mod 2) + y*(1-(y mod 2)).
For n >= 5, and n mod 5 = 0,
i) a(n) = a(n+1) = a(n+3),
ii) a(n+2) = 2*a(n) mod 10, and
iii) a(n+4) = 4*a(n) mod 10.
For k not equal to 1, a(10^k) = a(2^k). See second Dresden link, and second Bomfim link.
(End)

Extensions

More terms from Greg Dresden, Feb 21 2006

A132739 Largest divisor of n not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 1, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 2, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69, 14, 71, 72, 73, 74, 3, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

A000265(a(n)) = a(A000265(n)) = A132740(n).
a(n) = A060791(n) when n is not divisible by 5. When n is divisible by 5 a(n) divides A060791(n). Tom Edgar, Feb 08 2014
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (4*5)*G(x^5) - (4*25)*G(x^25) - (4*125)*G(x^125) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (4/5)*H(x^5) - (4/25)*H(x^25) - (4/125)*H(x^125) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (4/5^2)*L(x^5) - (4/25^2)*L(x^25) - (4/125^2)*L(x^125) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (4/5)*L(x^5) + (4/5)*L(x^25) + (4/5)*L(x^125) + ....
(End)
		

Crossrefs

Programs

Formula

a(n) = n/A060904(n). Dirichlet g.f.: zeta(s-1)*(5^s-5)/(5^s-1). - R. J. Mathar, Jul 12 2012
a(n) = n/5^A112765(n). See A060904. - Wolfdieter Lang, Jun 18 2014
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,5^n).
O.g.f.: F(x) - 4*F(x^5) - 4*F(x^25) - 4*F(x^125) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (5^m - 1)(F(m,x^5) + F(m,x^25) + F(m,x^125) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 28 2022

A132741 Largest divisor of n having the form 2^i*5^j.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 16, 1, 2, 1, 20, 1, 2, 1, 8, 25, 2, 1, 4, 1, 10, 1, 32, 1, 2, 5, 4, 1, 2, 1, 40, 1, 2, 1, 4, 5, 2, 1, 16, 1, 50, 1, 4, 1, 2, 5, 8, 1, 2, 1, 20, 1, 2, 1, 64, 5, 2, 1, 4, 1, 10, 1, 8, 1, 2, 25, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 32, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

The range of this sequence, { a(n); n>=0 }, is equal to A003592. - M. F. Hasler, Dec 28 2015

Crossrefs

Cf. A379003 (ordinal transform), A379004 (rgs-transform).
Cf. also A355582.

Programs

  • Haskell
    a132741 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 5 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Maple
    A132741 := proc(n) local f,a; f := ifactors(n)[2] ; a := 1; for f in ifactors(n)[2] do if op(1,f) =2 then a := a*2^op(2,f) ; elif op(1,f) =5 then a := a*5^op(2,f) ; end if; end do;a; end proc: # R. J. Mathar, Sep 06 2011
  • Mathematica
    a[n_] := SelectFirst[Reverse[Divisors[n]], MatchQ[FactorInteger[#], {{1, 1}} | {{2, }} | {{5, }} | {{2, }, {5, }}]&]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
    a[n_] := Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    A132741(n)=5^valuation(n,5)<M. F. Hasler, Dec 28 2015

Formula

a(n) = n / A132740(n).
a(A003592(n)) = A003592(n).
A051626(a(n)) = 0.
A007732(a(n)) = 1.
From R. J. Mathar, Sep 06 2011: (Start)
Multiplicative with a(2^e)=2^e, a(5^e)=5^e and a(p^e)=1 for p=3 or p>=7.
Dirichlet g.f. zeta(s)*(2^s-1)*(5^s-1)/((2^s-2)*(5^s-5)). (End)
a(n) = A006519(n)*A060904(n) = 2^A007814(n)*5^A112765(n). - M. F. Hasler, Dec 28 2015
Sum_{k=1..n} a(k) ~ n*(12*log(n)^2 + (24*gamma + 36*log(2) - 24)*log(n) + 24 - 24*gamma - 36*log(2) + 36*gamma*log(2) + 2*log(2)^2 - 18*log(5) + 18*gamma*log(5) + 27*log(2)*log(5) + 2*log(5)^2 + 18*log(5)*log(n) - 24*gamma_1)/(60*log(2)*log(5)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023

A225017 Odd part of digit sum of 5^n divided by maximal possible power of 5.

Original entry on oeis.org

1, 1, 7, 1, 13, 11, 19, 23, 1, 13, 1, 19, 7, 23, 17, 11, 29, 7, 1, 59, 61, 31, 67, 37, 41, 77, 79, 89, 17, 83, 91, 13, 53, 89, 103, 23, 109, 13, 31, 67, 13, 137, 29, 149, 151, 29, 7, 1, 29, 79, 151, 19, 13, 119, 127, 167, 49, 43, 211, 191, 199, 97, 187, 17, 83
Offset: 0

Views

Author

Vladimir Shevelev, Apr 24 2013

Keywords

Comments

Does the sequence contain every prime greater than 5?

Crossrefs

Programs

  • Maple
    a:= proc(n) local m, r; m, r:= 0, 5^n;
          while r>0 do m:= m+irem(r, 10, 'r') od;
          while irem(m, 2, 'r')=0 do m:=r od;
          while irem(m, 5, 'r')=0 do m:=r od; m
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 24 2013
  • Mathematica
    Map[#/(2^IntegerExponent[#,2] 5^IntegerExponent[#,5])&[Total[ IntegerDigits[5^#]]]&,Range[0,99]] (* Peter J. C. Moses, Apr 24 2013 *)
  • PARI
    a(n) = my(x = sumdigits(5^n)); x/5^valuation(x, 5) >> valuation(x, 2); \\ Michel Marcus, Dec 10 2018

Formula

a(n) = A132740(A055566(n)). - Michel Marcus, Dec 10 2018

A069105 1/n has period 3 in base 10.

Original entry on oeis.org

27, 37, 54, 74, 108, 111, 135, 148, 185, 216, 222, 270, 296, 333, 370, 432, 444, 540, 555, 592, 666, 675, 740, 864, 888, 925, 999, 1080, 1110, 1184, 1332, 1350, 1480, 1665, 1728, 1776, 1850, 1998, 2160, 2220, 2368, 2664, 2700, 2775, 2960, 3330, 3375, 3456, 3552, 3700, 3996, 4320, 4440, 4625, 4736, 4995
Offset: 1

Views

Author

Joshua Horowitz (mccartneyman(AT)yahoo.com), Apr 07 2002

Keywords

Examples

			1/1332 = 0.000750750750...
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[7500], Length[ RealDigits[1/# ] [[1, -1]]] == 3 &]
  • PARI
    is(n,S=[27,37,111,333,999])=setsearch(S,n\5^valuation(n,5)>>valuation(n,2)) \\ M. F. Hasler, Apr 25 2017

Formula

Numbers of the form a*b*c where a is in {27, 37, 111, 333, 999}, b is a power of 2 and c is a power of 5. - Henry Bottomley, Apr 12 2002
Equivalently: A132740(n) divides 999 but does not divide 9. - M. F. Hasler, Apr 25 2017

Extensions

Extended by Robert G. Wilson v, Apr 07 2002
Terms added and program corrected to agree with description by Ray Chandler, Apr 17 2017

A165725 Largest divisor of n coprime to 30. I.e., a(n) = max { k | gcd(n, k) = k and gcd(k, 30) = 1 }.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 13, 7, 1, 1, 17, 1, 19, 1, 7, 11, 23, 1, 1, 13, 1, 7, 29, 1, 31, 1, 11, 17, 7, 1, 37, 19, 13, 1, 41, 7, 43, 11, 1, 23, 47, 1, 49, 1, 17, 13, 53, 1, 11, 7, 19, 29, 59, 1, 61, 31, 7, 1, 13, 11, 67, 17, 23, 7, 71, 1, 73, 37, 1, 19, 77, 13, 79, 1, 1, 41, 83, 7
Offset: 1

Views

Author

Barry Wells (wells.barry(AT)gmail.com), Sep 25 2009

Keywords

Comments

This is the sequence of the largest divisor of n which is coprime to 30. The product of the first 3 prime numbers is 2*3*5=30. This sequence gives the largest factor of n which does not include 2, 3 or 5 in its prime factorization.

Examples

			The largest factor of 1, 2, 3, 4, 5 and 6 not including the primes 2, 3 and 5 is 1. 7 is prime and therefore its sequence value is 7. For p > 5, p prime, gives a(p) = p. As 14 = 2*7, a(14)= 7. As 98 = 2*7*7, a(98)= 49.
		

Crossrefs

A051037 gives the smooth five numbers, numbers whose prime divisor only include 2, 3 and 5. A132740 gives the largest divisor of n coprime to 10. A065330 gives a(n) = max { k | gcd(n, k) = k and gcd(k, 6) = 1 }.
Largest divisor of n coprime to a prime factor of 30: A000265 (2), A038502 (3), A132739 (5).
Cf. A355582.

Programs

  • Mathematica
    a[n_] := n / Times @@ ({2, 3, 5}^IntegerExponent[n, {2, 3, 5}]); Array[a, 100] (* Amiram Eldar, Jul 10 2022 *)
  • PARI
    a(n)=n>>valuation(n,2)/3^valuation(n,3)/5^valuation(n,5) \\ Charles R Greathouse IV, Jul 16 2017

Formula

From Amiram Eldar, Jul 10 2022: (Start)
Multiplicative with a(p^e) = p^e if p >= 7 and 1 otherwise.
a(n) = n/A355582(n). (End)
Sum_{k=1..n} a(k) ~ (5/24) * n^2. - Amiram Eldar, Nov 28 2022
Dirichlet g.f.: zeta(s-1)*(2^s-2)*(3^s-3)*(5^s-5)/((2^s-1)*(3^s-1)*(5^s-1)). - Amiram Eldar, Jan 04 2023
Showing 1-10 of 15 results. Next