cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A051627 Periods associated with A040017.

Original entry on oeis.org

1, 2, 3, 4, 10, 12, 9, 14, 24, 36, 48, 38, 19, 23, 39, 62, 120, 150, 106, 93, 134, 294, 196, 320, 654, 738, 385, 586, 317, 597, 1404, 945, 1452, 1836, 1752, 1172, 1812, 1282, 1426, 2232, 1862, 1844, 1521, 2134, 3750, 1031, 2264, 2667, 4354, 3927, 4274, 6522, 3903, 6022, 6682, 6135, 9550, 5877
Offset: 1

Views

Author

Keywords

Comments

The numbers in A007498 sorted according to the magnitude of the corresponding prime. - T. D. Noe, Sep 08 2005

Examples

			The decimal expansion of 1/101 is 0.00990099..., having a period of 4 and it is the only prime with that period.
		

Programs

  • Mathematica
    nmax = 10000; primesPeriods = Reap[Do[p = Cyclotomic[n, 10]/GCD[n, Cyclotomic[n, 10]]; If[PrimeQ[p], Print[n]; Sow[{p, n}]], {n, 1, nmax}]][[2, 1]]; Sort[primesPeriods][[All, 2]] // Prepend[#, 1]& // Take[#, 58]& (* Jean-François Alcover, Mar 29 2013 *)

Formula

a(n) = A002371(A000720(A040017(n))). - Max Alekseyev, Oct 14 2022

Extensions

More terms from Jud McCranie
More terms from T. D. Noe, Sep 08 2005
Corrected a(45)=3750 and extended by Ray Chandler, Oct 13 2008

A138940 Indices n such that A019328(n) = Phi(n,10) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

2, 4, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, 4274, 4354, 5877, 6022
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

Unique period primes (A040017) are often of the form Phi(k,10) or Phi(k,-10).
Terms of this sequence which are the square of a prime, a(n)=p^2, are such that A252491(p) is prime. Apart from a(2)=2^2, there is no such term up to 26570. - M. F. Hasler, Jan 09 2015

Crossrefs

Cf. Subsequence of A007498, contains A004023.

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 10]] &] (* T. D. Noe, Mar 03 2012 *)
  • PARI
    for( i=1,999, isprime( polcyclo(i,10)) && print1( i","))

Extensions

a(28)-a(43) from Robert Price, Mar 03 2012
a(44)-a(50) from Robert Price, Apr 14 2012
a(51)-a(91) from Ray Chandler, Maksym Voznyy et al. (cf. Phi_n(10) link), ca. 2009
a(92)-a(93) from Serge Batalov, Mar 28 2015

A036275 The periodic part of the decimal expansion of 1/n. Any initial 0's are to be placed at end of cycle.

Original entry on oeis.org

0, 0, 3, 0, 0, 6, 142857, 0, 1, 0, 90, 3, 769230, 714285, 6, 0, 5882352941176470, 5, 526315789473684210, 0, 476190, 45, 4347826086956521739130, 6, 0, 384615, 370, 571428, 3448275862068965517241379310, 3, 322580645161290, 0, 30, 2941176470588235, 285714, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 iff n = 2^i*5^j (A003592). - Jon Perry, Nov 19 2014
a(n) = n iff n = 3 or 6 (see De Koninck & Mercier reference). - Bernard Schott, Dec 02 2020

Examples

			1/28 = .03571428571428571428571428571428571428571... and digit-cycle is 571428, so a(28)=571428.
		

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 347 pp. 50 and 205, Ellipses, Paris, 2004.

Crossrefs

Programs

  • Maple
    isCycl := proc(n) local ifa,i ; if n <= 2 then RETURN(false) ; fi ; ifa := ifactors(n)[2] ; for i from 1 to nops(ifa) do if op(1,op(i,ifa)) <> 2 and op(1,op(i,ifa)) <> 5 then RETURN(true) ; fi ; od ; RETURN(false) ; end: A036275 := proc(n) local ifa,sh,lpow,mpow,r ; if not isCycl(n) then RETURN(0) ; else lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then r := (10^lpow-10^mpow)/n ; r := r mod (10^(lpow-mpow)-1) ; while r*10 < 10^(lpow-mpow) do r := 10*r ; od ; RETURN(r) ; fi ; od ; lpow := lpow+1 ; od ; fi ; end: for n from 1 to 60 do printf("%d %d ",n,A036275(n)) ; od ; # R. J. Mathar, Oct 19 2006
  • Mathematica
    fc[n_]:=Block[{q=RealDigits[1/n][[1,-1]]},If[IntegerQ[q],0,While[First[q]==0,q=RotateLeft[q]];FromDigits[q]]];
    Table[fc[n],{n,36}] (* Ray Chandler, Nov 19 2014, corrected Jun 27 2017 *)
    Table[FromDigits[FindTransientRepeat[RealDigits[1/n,10,120][[1]],3] [[2]]],{n,40}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2019 *)

Extensions

Corrected and extended by N. J. A. Sloane
Corrected a(92), a(208), a(248), a(328), a(352) and a(488) which missed a trailing zero (see the table). - Philippe Guglielmetti, Jun 20 2017

A138920 Indices k such that A020509(k)=Phi[k](-10) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

4, 5, 7, 12, 19, 24, 31, 36, 38, 46, 48, 53, 67, 75, 78, 120, 186, 196, 293, 320, 327, 369, 634, 641, 713, 770, 931, 1067, 1172, 1194, 1404, 1452, 1752, 1812, 1836, 1844, 1875, 1890, 2062, 2137, 2177, 2232, 2264, 3011, 3042, 3261, 3341, 4775, 5334, 6685
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

"Unique [period] primes" (A040017) are often of the form Phi[k](10) or Phi[k](-10).
Two cyclotomic polynomial identities tightly connect this sequence to A138940: 1) Phi_2k(x) = Phi_k(-x) for odd integer k > 1. 2) Phi_4k(x) = Phi_2k(x^2) for all positive integer k. - Ray Chandler, Apr 30 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, -10]] &]
  • PARI
    for( i=1,999, is/*pseudo*/prime( polcyclo(i,-10)) &&& print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i,x),x,-10)... */

Extensions

a(28)-a(43) from Robert Price, Mar 09 2012
a(44)-a(50) from Robert Price, Apr 14 2012

A112505 Number of primitive prime factors of 10^n-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 3, 3, 1, 1, 3, 2, 2, 3, 5, 3, 3, 5, 2, 3, 3, 1, 3, 1, 1, 2, 4, 3, 4, 3, 2, 4, 2, 1, 2, 3, 4, 2, 4, 2, 4, 2, 3, 2, 2, 3, 7, 1, 5, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 4, 4, 6, 2, 5, 2, 3, 2, 3, 3, 3, 2, 5, 3, 7, 3, 1, 3, 5, 4, 3, 2, 4, 4
Offset: 1

Views

Author

T. D. Noe, Sep 08 2005

Keywords

Comments

Also the number of primes whose reciprocal is a repeating decimal of length n. The number of numbers in each row of table A046107.
By Zsigmondy's theorem, a(n) >= 1. When a(n)=1, the corresponding prime is called a unique prime (see A007498, A040017 and A051627).

Crossrefs

Cf. A007138 (smallest primitive prime factor of 10^n-1), A102347 (number of distinct prime factors of 10^n-1), A046107.

Programs

  • Mathematica
    pp={}; Table[f=Transpose[FactorInteger[10^n-1]][[1]]; p=Complement[f, pp]; pp=Union[pp, p]; Length[p], {n, 66}]

Extensions

Terms to a(276) in b-file from T. D. Noe, Jun 01 2010
a(277)-a(322) in b-file from Ray Chandler, May 01 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 28 2022

A144755 Primes which divide none of overpseudoprimes to base 2 (A141232).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 31, 41, 43, 73, 127, 151, 241, 257, 331, 337, 683, 2731, 5419, 8191, 43691, 61681, 65537, 87211, 131071, 174763, 262657, 524287, 599479, 2796203, 15790321, 18837001, 22366891, 715827883, 2147483647, 4278255361
Offset: 1

Views

Author

Vladimir Shevelev, Sep 20 2008

Keywords

Comments

Odd prime p is in the sequence iff A064078(A002326((p-1)/2))=p. For example, for p=127 we have A002326((127-1)/2)=7 and A064078(7)=127. Thus p=127 is in the sequence.
Primes p such that the binary expansion of 1/p has a unique period length; that is, no other prime has the same period. Sequence A161509 sorted. - T. D. Noe, Apr 13 2010
Since A161509 has terms of varying magnitude, sorting any finite initial segment of A161509 cannot provide a guarantee that there are no other terms missed in between. Any prime p not (yet) appearing in A161509 should be tested via A064078(A002326((p-1)/2))=p to conclude whether it belongs to the current sequence. - Max Alekseyev, Feb 10 2024

Examples

			Overpseudoprimes to base 2 are odd, then a(1)=2.
		

Crossrefs

Cf. A040017 (unique-period primes in base 10). - T. D. Noe, Apr 13 2010

Programs

  • Mathematica
    b=2; t={}; Do[c=Cyclotomic[n,b]; q=c/GCD[n,c]; If[PrimePowerQ[q], p=FactorInteger[q][[1,1]]; If[p<10^12, AppendTo[t,p]; Print[{n,p}]]], {n,1000}]; t=Sort[t] (* T. D. Noe, Apr 13 2010 *)
  • PARI
    { is_a144755(p) = my(q,m,g); q=znorder(Mod(2,p)); m=2^q-1; fordiv(q,d, if(d1,m\=g))); m==p; } \\ Max Alekseyev, Feb 10 2024

Extensions

Extended by T. D. Noe, Apr 13 2010
b-file deleted by Max Alekseyev, Feb 10 2024.

A007615 Primes with unique period length (the periods are given in A007498).

Original entry on oeis.org

3, 11, 37, 101, 333667, 9091, 9901, 909091, 1111111111111111111, 11111111111111111111111, 99990001, 999999000001, 909090909090909091, 900900900900990990990991, 9999999900000001, 909090909090909090909090909091, 900900900900900900900900900900990990990990990990990990990991
Offset: 1

Views

Author

Keywords

Comments

Additional terms are Phi(n,10)/gcd(n,Phi(n,10)) for the n in A007498, where Phi(n,10) is the n-th cyclotomic polynomial evaluated at 10.

Examples

			3 is the only prime p such that decimal expansion of 1/p has (nontrivial) period exactly 1.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24.

Crossrefs

Programs

  • Mathematica
    nmax = 50; periods = Reap[ Do[ p = Cyclotomic[n, 10] / GCD[n, Cyclotomic[n, 10]]; If[ PrimeQ[p], Sow[n]], {n, 1, nmax}]][[2, 1]]; Cyclotomic[#, 10] / GCD[#, Cyclotomic[#, 10]]& /@ periods // Prepend[#, 3]& (* Jean-François Alcover, Mar 28 2013 *)

Formula

a(n) = A061075(A007498(n)). - Max Alekseyev, Oct 16 2010
a(n) = A006530(A019328(A007498(n))). - Ray Chandler, May 10 2017

A306073 Bases in which 3 is a unique-period prime.

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 17, 23, 26, 28, 35, 47, 53, 71, 80, 82, 95, 107, 143, 161, 191, 215, 242, 244, 287, 323, 383, 431, 485, 575, 647, 728, 730, 767, 863, 971, 1151, 1295, 1457, 1535, 1727, 1943, 2186, 2188, 2303, 2591, 2915, 3071, 3455, 3887
Offset: 1

Views

Author

Jianing Song, Jun 19 2018

Keywords

Comments

A prime p is called a unique-period prime in base b if there is no other prime q such that the period length of the base-b expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q.
A prime p is a unique-period prime in base b if and only if Zs(b, 1, ord(b,p)) = p^k, k >= 1. Here Zs(b, 1, d) is the greatest divisor of b^d - 1 that is coprime to b^m - 1 for all positive integers m < d, and ord(b,p) is the multiplicative order of b modulo p.
b is a term if and only if: (a) b = 3^t + 1, t >= 1; (b) b = 2^s*3^t - 1, s >= 0, t >= 1.
For every odd prime p, p is a unique-period prime in base b if b = p^t + 1, t >= 1 or b = 2^s*p^t - 1, s >= 0, t >= 1. These are trivial bases in which p is a unique-period prime, with ord(b,p) = 1 or 2. By Faltings's theorem, there are only finitely many nontrivial bases in which p is also a unique-period prime, with ord(b,p) >= 3. For p = 3, there are no nontrivial bases, since ord(3,b) <= 2.

Examples

			If b = 3^t + 1, t >= 1, then b - 1 only has prime factor 3, so 3 is a unique-period prime in base b.
If b = 2^s*3^t - 1, t >= 1, then the prime factors of b^2 - 1 are 3 and prime factors of b - 1 = 2^s*3^t - 2, 3 is the only new prime factor so 3 is a unique-period prime in base b.
		

Crossrefs

Cf. A040017 (unique primes in base 10), A144755 (unique primes in base 2).
Bases in which p is a unique prime: A000051 (p=2), this sequence (p=3), A306074 (p=5), A306075 (p=7), A306076 (p=11), A306077 (p=13).

Programs

  • PARI
    p = 3;
    gpf(n)=if(n>1, vecmax(factor(n)[, 1]), 1);
    test(n, q)=while(n%p==0, n/=p); if(q>1, while(n%q==0, n/=q)); n==1;
    for(n=2, 10^6, if(gcd(n, p)==1, if(test(polcyclo(znorder(Mod(n, p)), n), gpf(znorder(Mod(n, p)))), print1(n, ", "))));

A306074 Bases in which 5 is a unique-period prime.

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 19, 24, 26, 39, 49, 79, 99, 124, 126, 159, 199, 249, 319, 399, 499, 624, 626, 639, 799, 999, 1249, 1279, 1599, 1999, 2499, 2559, 3124, 3126, 3199, 3999, 4999, 5119, 6249, 6399, 7999, 9999, 10239, 12499, 12799, 15624, 15626, 15999, 19999, 20479
Offset: 1

Views

Author

Jianing Song, Jun 19 2018

Keywords

Comments

A prime p is called a unique-period prime in base b if there is no other prime q such that the period length of the base-b expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q.
A prime p is a unique-period prime in base b if and only if Zs(b, 1, ord(b,p)) = p^k, k >= 1. Here Zs(b, 1, d) is the greatest divisor of b^d - 1 that is coprime to b^m - 1 for all positive integers m < d, and ord(b,p) is the multiplicative order of b modulo p.
b is a term if and only if: (a) b = 5^t + 1, t >= 1; (b) b = 2^s*5^t - 1, s >= 0, t >= 1; (c) b = 2, 3, 7.
For every odd prime p, p is a a unique-period prime in base b if b = p^t + 1, t >= 1 or b = 2^s*p^t - 1, s >= 0, t >= 1. These are trivial bases in which p is a unique-period prime, with ord(b,p) = 1 or 2. By Faltings's theorem, there are only finitely many nontrivial bases in which p is also a unique-period prime, with ord(b,p) >= 3. For p = 5, the nontrivial bases are 2, 3, 7.

Examples

			1/5 has period length 4 in base 2. Note that 3 and 5 are the only prime factors of 2^4 - 1 = 15, but 1/3 has period length 2, so 5 is a unique-period prime in base 2.
1/5 has period length 4 in base 3. Note that 2 and 5 are the only prime factors of 3^4 - 1 = 80, but 1/2 has period length 1, so 5 is a unique-period prime in base 3.
1/5 has period length 4 in base 7. Note that 2, 3 and 5 are the only prime factors of 7^4 - 1 = 2400, but 1/2 and 1/3 both have period length 1, so 5 is a unique-period prime in base 7.
		

Crossrefs

Cf. A040017 (unique-period primes in base 10), A144755 (base 2).
Bases in which p is a unique-period prime: A000051 (p=2), A306073 (p=3), this sequence (p=5), A306075 (p=7), A306076 (p=11), A306077 (p=13).

Programs

  • PARI
    p = 5;
    gpf(n)=if(n>1, vecmax(factor(n)[, 1]), 1);
    test(n, q)=while(n%p==0, n/=p); if(q>1, while(n%q==0, n/=q)); n==1;
    for(n=2, 10^6, if(gcd(n, p)==1, if(test(polcyclo(znorder(Mod(n, p)), n), gpf(znorder(Mod(n, p)))), print1(n, ", "))));

A306075 Bases in which 7 is a unique-period prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 13, 18, 19, 27, 48, 50, 55, 97, 111, 195, 223, 342, 344, 391, 447, 685, 783, 895, 1371, 1567, 1791, 2400, 2402, 2743, 3135, 3583, 4801, 5487, 6271, 7167, 9603, 10975, 12543, 14335, 16806, 16808, 19207, 21951, 25087, 28671, 33613, 38415, 43903, 50175
Offset: 1

Views

Author

Jianing Song, Jun 19 2018

Keywords

Comments

A prime p is called a unique-period prime in base b if there is no other prime q such that the period length of the base-b expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q.
A prime p is a unique-period prime in base b if and only if Zs(b, 1, ord(b,p)) = p^k, k >= 1. Here Zs(b, 1, d) is the greatest divisor of b^d - 1 that is coprime to b^m - 1 for all positive integers m < d, and ord(b,p) is the multiplicative order of b modulo p.
b is a term if and only if: (a) b = 7^t + 1, t >= 1; (b) b = 2^s*7^t - 1, s >= 0, t >= 1; (c) b = 2, 3, 4, 5, 18, 19.
For every odd prime p, p is a unique-period prime in base b if b = p^t + 1, t >= 1 or b = 2^s*p^t - 1, s >= 0, t >= 1. These are trivial bases in which p is a unique-period prime, with ord(b,p) = 1 or 2. By Faltings's theorem, there are only finitely many nontrivial bases in which p is also a unique-period prime, with ord(b,p) >= 3. For p = 7, the nontrivial bases are 2, 3, 4, 5, 18, 19.

Examples

			1/7 has period length 3 in base 2. Note that 7 is the only prime factor of 2^3 - 1 = 7, so 7 is a unique-period prime in base 2.
1/7 has period length 3 in base 4. Note that 3, 7 are the only prime factors of 4^3 - 1 = 63, but 1/3 has period length 1, so 7 is a unique-period prime in base 4.
1/7 has period length 3 in base 18. Note that 7, 17 are the only prime factors of 18^3 - 1 = 5831, but 1/17 has period length 1, so 7 is a unique-period prime in base 18.
(1/7 has period length 6 in base 3, 5, 19. Similar demonstrations can be found.)
		

Crossrefs

Cf. A040017 (unique-period primes in base 10), A144755 (unique-period primes in base 2).
Bases in which p is a unique-period prime: A000051 (p=2), A306073 (p=3), A306074 (p=5), this sequence (p=7), A306076 (p=11), A306077 (p=13).

Programs

  • PARI
    p = 7;
    gpf(n)=if(n>1, vecmax(factor(n)[, 1]), 1);
    test(n, q)=while(n%p==0, n/=p); if(q>1, while(n%q==0, n/=q)); n==1;
    for(n=2, 10^6, if(gcd(n, p)==1, if(test(polcyclo(znorder(Mod(n, p)), n), gpf(znorder(Mod(n, p)))), print1(n, ", "))));
Showing 1-10 of 16 results. Next