cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A138920 Indices k such that A020509(k)=Phi[k](-10) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

4, 5, 7, 12, 19, 24, 31, 36, 38, 46, 48, 53, 67, 75, 78, 120, 186, 196, 293, 320, 327, 369, 634, 641, 713, 770, 931, 1067, 1172, 1194, 1404, 1452, 1752, 1812, 1836, 1844, 1875, 1890, 2062, 2137, 2177, 2232, 2264, 3011, 3042, 3261, 3341, 4775, 5334, 6685
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

"Unique [period] primes" (A040017) are often of the form Phi[k](10) or Phi[k](-10).
Two cyclotomic polynomial identities tightly connect this sequence to A138940: 1) Phi_2k(x) = Phi_k(-x) for odd integer k > 1. 2) Phi_4k(x) = Phi_2k(x^2) for all positive integer k. - Ray Chandler, Apr 30 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, -10]] &]
  • PARI
    for( i=1,999, is/*pseudo*/prime( polcyclo(i,-10)) &&& print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i,x),x,-10)... */

Extensions

a(28)-a(43) from Robert Price, Mar 09 2012
a(44)-a(50) from Robert Price, Apr 14 2012

A072226 Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208, 234, 254, 261
Offset: 1

Views

Author

Reiner Martin, Jul 04 2002

Keywords

Comments

The prime n in this sequence are in A000043, which produce the Mersenne primes. If 2p is in this sequence, with p prime, then p is a Wagstaff number, A000978. - T. D. Noe, Apr 02 2008
While the sequence looks quite dense for small values, note that there are only 10 values in the interval [700,1200]. - M. F. Hasler, Apr 03 2008
No term greater than 12 can be congruent to 4 modulo 8 as proved by Schinzel (1962), see also Pomerance (2024). Note the Aurifeuillean factorization: Product_{4|d, d|8*k+4} Phi(d,2) = 2^(4k+2) + 1 = (2^(2k+1) - 2^(k+1) + 1) * (2^(2k+1) + 2^(k+1) + 1). If Phi(8*k+4,2) is prime, then it divides either 2^(2k+1) - 2^(k+1) + 1 or 2^(2k+1) + 2^(k+1) + 1. This immediately proves that no term can be of the form 4*p for odd primes p >= 5 Since Phi(4*p,2) = (2^(2*p) + 1)/5. - Jianing Song, Apr 04 2022; edited by Max Alekseyev, Dec 03 2024

Crossrefs

Corresponding primes are listed in A292015.

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[ #, 2]]&]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,2)) && print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i),x,2)... */ \\ M. F. Hasler, Apr 03 2008

Extensions

Edited by Max Alekseyev, Apr 25 2018

A019328 Cyclotomic polynomials at x=10.

Original entry on oeis.org

9, 11, 111, 101, 11111, 91, 1111111, 10001, 1001001, 9091, 11111111111, 9901, 1111111111111, 909091, 90090991, 100000001, 11111111111111111, 999001, 1111111111111111111, 99009901, 900900990991, 9090909091, 11111111111111111111111, 99990001
Offset: 1

Views

Author

Keywords

Comments

See A138940 for indices n for which a(n) is prime. - M. F. Hasler, Jan 09 2015

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=10,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Cyclotomic[Range[30], 10] (* Paolo Xausa, Feb 26 2024 *)
  • PARI
    A019328(n)=polcyclo(n,10) \\ Simplified by M. F. Hasler, Jan 09 2015

A138929 Twice the prime powers A000961.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 32, 34, 38, 46, 50, 54, 58, 62, 64, 74, 82, 86, 94, 98, 106, 118, 122, 128, 134, 142, 146, 158, 162, 166, 178, 194, 202, 206, 214, 218, 226, 242, 250, 254, 256, 262, 274, 278, 298, 302, 314, 326, 334, 338, 346, 358, 362, 382
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2008

Keywords

Comments

Except for the initial term a(1)=2, indices k such that A020513(k)=Phi[k](-1) is prime, where Phi is a cyclotomic polynomial.
This is illustrated by the PARI code, although it is probably more efficient to calculate a(n) as 2*A000961(n).
{ a(n)/2 ; n>1 } are also the indices for which A020500(k)=Phi[k](1) is prime.
A188666(k) = A000961(k+1) for k: a(k) <= k < a(k+1), k > 0;
A188666(a(n)) = A000961(n+1). [Reinhard Zumkeller, Apr 25 2011]

Crossrefs

Cf. A000961, A020513, A138920-A138940, A230078 (complement).

Programs

  • Maple
    a := n -> `if`(1>=nops(numtheory[factorset](n)),2*n,NULL):
    seq(a(i),i=1..192); # Peter Luschny, Aug 12 2009
  • Mathematica
    Join[{2}, Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, -1]] &]] (* Robert G. Wilson v, Mar 25 2012 - modified by Paolo Xausa, Aug 30 2024 to include a(1) *)
    2*Join[{1}, Select[Range[500], PrimePowerQ]] (* Paolo Xausa, Aug 30 2024 *)
  • PARI
    print1(2);for( i=1,999, isprime( polcyclo(i,-1)) & print1(",",i)) /* use ...subst(polcyclo(i),x,-2)... in PARI < 2.4.2. It should be more efficient to calculate a(n) as 2*A000961(n) ! */
    
  • Python
    from sympy import primepi, integer_nthroot
    def A138929(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax<<1 # Chai Wah Wu, Aug 29 2024

Formula

a(n) = 2*A000961(n).
Equals {2} union { k | Phi[k](-1)=A020513(k) is prime } = {2} union { 2k | Phi[k](1)=A020500(k) is prime }.

A138933 Indices k such that A019321(k)=Phi[k](3) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 3, 6, 7, 9, 10, 12, 13, 14, 15, 21, 24, 26, 33, 36, 40, 46, 60, 63, 70, 71, 72, 86, 103, 108, 130, 132, 143, 145, 154, 161, 236, 255, 261, 276, 279, 287, 304, 364, 430, 464, 513, 528, 541, 562, 665, 672, 680, 707, 718, 747, 760, 782, 828, 875, 892, 974, 984
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 3]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,3)) && print1( i","))

A252491 a(n) = (10^(n^2) - 1)/(10^n - 1).

Original entry on oeis.org

1, 101, 1001001, 1000100010001, 100001000010000100001, 1000001000001000001000001000001, 1000000100000010000001000000100000010000001, 100000001000000010000000100000001000000010000000100000001, 1000000001000000001000000001000000001000000001000000001000000001
Offset: 1

Views

Author

M. F. Hasler, Jan 08 2015

Keywords

Comments

When written in base 10, the terms consist of n digits '1' separated by strings of n-1 digits '0'.
This sequence is relevant for counterexamples to a conjecture in A086766: If p is prime and a(p) is not prime, then A086766(10^(p-1)) = 0.
a(n) is the product of A019328(d) for all d that divide n^2 but not n. - Robert Israel, Jan 08 2015
If a(n) is a prime then n is a prime. What is the smallest prime term greater than 101 in this sequence? - Farideh Firoozbakht, Jan 08 2015
According to what precedes, a(n) is prime iff A019328(d) is prime, where d is the only divisor of n^2 which is not a divisor of n, i.e., iff n is a prime and n^2 is in A138940. No such term is known, except for n=2. - M. F. Hasler, Jan 09 2015

Crossrefs

Cf. A128889 (for 2 instead of 10).

Programs

  • Maple
    seq((10^(n^2)-1)/(10^n-1), n=1..20); # Robert Israel, Jan 08 2015
  • PARI
    A252491(n)=(10^(n^2)-1)\(10^n-1)

A138919 Indices k such that A020510(k)=Phi[k](-11) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

5, 7, 18, 20, 21, 30, 34, 36, 38, 52, 54, 60, 90, 104, 117, 123, 146, 159, 179, 182, 229, 278, 388, 405, 410, 439, 552, 557, 735, 806, 807, 1220, 1272, 1568, 1688, 1696, 1710, 1814, 2136, 2262, 2288, 2862, 3679, 3814, 4058, 4304, 4480, 5070, 5136, 5154
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2008

Keywords

Comments

Larger values are probable primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, -11]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-11)) & print1(",",i)) /* use ...subst(polcyclo(i),x,-11)... in PARI < 2.4.2 */

Extensions

Edited by T. D. Noe, Oct 30 2008
a(32)-a(44) from Robert Price, Mar 16 2012
a(45)-a(50) from Robert Price, Apr 14 2012

A138934 Indices k such that A019322(k) = Phi[k](4) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 28, 40, 60, 92, 96, 104, 140, 148, 156, 300, 356, 408, 596, 612, 692, 732, 756, 800, 952, 996, 1004, 1228, 1268, 2240, 2532, 3060, 3796, 3824, 3944, 5096, 5540, 7476, 7700, 8544, 9800, 14628, 15828, 16908, 18480, 20260, 21924, 24656, 38456
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

It appears that except for 1,2 and 6, all terms of this sequence are multiples of 4.
It also appears that all cyclotomic polynomials, Phi(k,x), where k is a multiple of 4 have no odd powers of x. For example, Phi(20,x) = x^8 - x^6 + x^4 - x^2 + 1. This implies that Phi(k,x) = Phi(k,-x), where k is a multiple of 4. - Robert Price, Apr 13 2012
Second comment is true; this follows from applying Theorem 1.1 in the Gallot paper with p = 2 and m even. - Charlie Neder, May 16 2019

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 4]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,4)) && print1( i","))

Extensions

a(29)-a(51) from Robert Price, Apr 12 2012

A138935 Indices k such that A019323(k)=Phi[k](5) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 7, 10, 11, 12, 13, 24, 28, 47, 48, 49, 56, 57, 88, 90, 92, 108, 110, 116, 120, 127, 134, 141, 149, 161, 181, 198, 202, 206, 236, 248, 288, 357, 384, 420, 458, 500, 530, 536, 619, 620, 694, 798, 897, 929, 981, 992, 1064, 1134, 1230, 1670, 1807, 2094, 2369
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

Can there be an odd multiple of 5 in this sequence?

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 5]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,5)) && print1( i","))

Extensions

a(48)-a(54) from Robert Price, Apr 14 2012

A138936 Indices n such that A019324(k)=Phi[k](6) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 18, 21, 22, 24, 29, 30, 42, 50, 62, 71, 86, 90, 94, 118, 124, 127, 144, 154, 192, 214, 271, 354, 360, 411, 480, 509, 558, 575, 663, 764, 814, 825, 874, 1028, 1049, 1050, 1102, 1113, 1131, 1158, 1376, 1464, 1468, 1535, 1622, 1782, 1834
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 6]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,6)) && print1( i",")) /* use ...subst(polcyclo(i),x,6)... in PARI < 2.4.2 */

Extensions

a(41)-a(54) from Robert Price, Apr 16 2012
Showing 1-10 of 24 results. Next