cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A072226 Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208, 234, 254, 261
Offset: 1

Views

Author

Reiner Martin, Jul 04 2002

Keywords

Comments

The prime n in this sequence are in A000043, which produce the Mersenne primes. If 2p is in this sequence, with p prime, then p is a Wagstaff number, A000978. - T. D. Noe, Apr 02 2008
While the sequence looks quite dense for small values, note that there are only 10 values in the interval [700,1200]. - M. F. Hasler, Apr 03 2008
No term greater than 12 can be congruent to 4 modulo 8 as proved by Schinzel (1962), see also Pomerance (2024). Note the Aurifeuillean factorization: Product_{4|d, d|8*k+4} Phi(d,2) = 2^(4k+2) + 1 = (2^(2k+1) - 2^(k+1) + 1) * (2^(2k+1) + 2^(k+1) + 1). If Phi(8*k+4,2) is prime, then it divides either 2^(2k+1) - 2^(k+1) + 1 or 2^(2k+1) + 2^(k+1) + 1. This immediately proves that no term can be of the form 4*p for odd primes p >= 5 Since Phi(4*p,2) = (2^(2*p) + 1)/5. - Jianing Song, Apr 04 2022; edited by Max Alekseyev, Dec 03 2024

Crossrefs

Corresponding primes are listed in A292015.

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[ #, 2]]&]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,2)) && print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i),x,2)... */ \\ M. F. Hasler, Apr 03 2008

Extensions

Edited by Max Alekseyev, Apr 25 2018

A138929 Twice the prime powers A000961.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 32, 34, 38, 46, 50, 54, 58, 62, 64, 74, 82, 86, 94, 98, 106, 118, 122, 128, 134, 142, 146, 158, 162, 166, 178, 194, 202, 206, 214, 218, 226, 242, 250, 254, 256, 262, 274, 278, 298, 302, 314, 326, 334, 338, 346, 358, 362, 382
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2008

Keywords

Comments

Except for the initial term a(1)=2, indices k such that A020513(k)=Phi[k](-1) is prime, where Phi is a cyclotomic polynomial.
This is illustrated by the PARI code, although it is probably more efficient to calculate a(n) as 2*A000961(n).
{ a(n)/2 ; n>1 } are also the indices for which A020500(k)=Phi[k](1) is prime.
A188666(k) = A000961(k+1) for k: a(k) <= k < a(k+1), k > 0;
A188666(a(n)) = A000961(n+1). [Reinhard Zumkeller, Apr 25 2011]

Crossrefs

Cf. A000961, A020513, A138920-A138940, A230078 (complement).

Programs

  • Maple
    a := n -> `if`(1>=nops(numtheory[factorset](n)),2*n,NULL):
    seq(a(i),i=1..192); # Peter Luschny, Aug 12 2009
  • Mathematica
    Join[{2}, Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, -1]] &]] (* Robert G. Wilson v, Mar 25 2012 - modified by Paolo Xausa, Aug 30 2024 to include a(1) *)
    2*Join[{1}, Select[Range[500], PrimePowerQ]] (* Paolo Xausa, Aug 30 2024 *)
  • PARI
    print1(2);for( i=1,999, isprime( polcyclo(i,-1)) & print1(",",i)) /* use ...subst(polcyclo(i),x,-2)... in PARI < 2.4.2. It should be more efficient to calculate a(n) as 2*A000961(n) ! */
    
  • Python
    from sympy import primepi, integer_nthroot
    def A138929(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax<<1 # Chai Wah Wu, Aug 29 2024

Formula

a(n) = 2*A000961(n).
Equals {2} union { k | Phi[k](-1)=A020513(k) is prime } = {2} union { 2k | Phi[k](1)=A020500(k) is prime }.

A138933 Indices k such that A019321(k)=Phi[k](3) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 3, 6, 7, 9, 10, 12, 13, 14, 15, 21, 24, 26, 33, 36, 40, 46, 60, 63, 70, 71, 72, 86, 103, 108, 130, 132, 143, 145, 154, 161, 236, 255, 261, 276, 279, 287, 304, 364, 430, 464, 513, 528, 541, 562, 665, 672, 680, 707, 718, 747, 760, 782, 828, 875, 892, 974, 984
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 3]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,3)) && print1( i","))

A138919 Indices k such that A020510(k)=Phi[k](-11) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

5, 7, 18, 20, 21, 30, 34, 36, 38, 52, 54, 60, 90, 104, 117, 123, 146, 159, 179, 182, 229, 278, 388, 405, 410, 439, 552, 557, 735, 806, 807, 1220, 1272, 1568, 1688, 1696, 1710, 1814, 2136, 2262, 2288, 2862, 3679, 3814, 4058, 4304, 4480, 5070, 5136, 5154
Offset: 1

Views

Author

M. F. Hasler, Apr 04 2008

Keywords

Comments

Larger values are probable primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, -11]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-11)) & print1(",",i)) /* use ...subst(polcyclo(i),x,-11)... in PARI < 2.4.2 */

Extensions

Edited by T. D. Noe, Oct 30 2008
a(32)-a(44) from Robert Price, Mar 16 2012
a(45)-a(50) from Robert Price, Apr 14 2012

A138934 Indices k such that A019322(k) = Phi[k](4) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 28, 40, 60, 92, 96, 104, 140, 148, 156, 300, 356, 408, 596, 612, 692, 732, 756, 800, 952, 996, 1004, 1228, 1268, 2240, 2532, 3060, 3796, 3824, 3944, 5096, 5540, 7476, 7700, 8544, 9800, 14628, 15828, 16908, 18480, 20260, 21924, 24656, 38456
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

It appears that except for 1,2 and 6, all terms of this sequence are multiples of 4.
It also appears that all cyclotomic polynomials, Phi(k,x), where k is a multiple of 4 have no odd powers of x. For example, Phi(20,x) = x^8 - x^6 + x^4 - x^2 + 1. This implies that Phi(k,x) = Phi(k,-x), where k is a multiple of 4. - Robert Price, Apr 13 2012
Second comment is true; this follows from applying Theorem 1.1 in the Gallot paper with p = 2 and m even. - Charlie Neder, May 16 2019

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 4]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,4)) && print1( i","))

Extensions

a(29)-a(51) from Robert Price, Apr 12 2012

A138935 Indices k such that A019323(k)=Phi[k](5) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 7, 10, 11, 12, 13, 24, 28, 47, 48, 49, 56, 57, 88, 90, 92, 108, 110, 116, 120, 127, 134, 141, 149, 161, 181, 198, 202, 206, 236, 248, 288, 357, 384, 420, 458, 500, 530, 536, 619, 620, 694, 798, 897, 929, 981, 992, 1064, 1134, 1230, 1670, 1807, 2094, 2369
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

Can there be an odd multiple of 5 in this sequence?

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 5]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,5)) && print1( i","))

Extensions

a(48)-a(54) from Robert Price, Apr 14 2012

A138936 Indices n such that A019324(k)=Phi[k](6) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 18, 21, 22, 24, 29, 30, 42, 50, 62, 71, 86, 90, 94, 118, 124, 127, 144, 154, 192, 214, 271, 354, 360, 411, 480, 509, 558, 575, 663, 764, 814, 825, 874, 1028, 1049, 1050, 1102, 1113, 1131, 1158, 1376, 1464, 1468, 1535, 1622, 1782, 1834
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 6]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,6)) && print1( i",")) /* use ...subst(polcyclo(i),x,6)... in PARI < 2.4.2 */

Extensions

a(41)-a(54) from Robert Price, Apr 16 2012

A138937 Indices k such that A019325(k)=Phi[k](7) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

5, 6, 13, 18, 21, 28, 30, 34, 36, 46, 48, 50, 54, 55, 58, 63, 76, 84, 94, 105, 122, 131, 148, 149, 224, 280, 288, 296, 332, 352, 456, 528, 531, 581, 650, 654, 730, 740, 759, 1026, 1047, 1065, 1460, 1660, 1699, 1959, 2067, 2260, 2380, 2665, 2890, 3238, 4020
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 7]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,7)) && print1( i",")) /* use ...subst(polcyclo(i),x,7)... in PARI < 2.4.2 */

Extensions

a(40)-a(53) from Robert Price, Apr 18 2012

A138939 Indices k such that A019327(k)=Phi[k](9) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

6, 12, 18, 20, 30, 36, 54, 66, 118, 138, 152, 182, 232, 264, 336, 340, 380, 414, 446, 492, 540, 624, 720, 762, 1066, 1094, 1098, 1170, 1230, 1254, 1320, 1428, 1546, 2018, 2574, 2724, 2804, 2920, 3074, 3316, 3646, 4124, 4132, 4186, 4620, 4802
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 9]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,9)) && print1( i",")) /* use ...subst( polcyclo(i),x,9)... in PARI < 2.4.2 */

Extensions

a(25)-a(46) from Robert Price, Apr 28 2012

A138921 Indices k such that A020508(k)=Phi[k](-9) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

3, 9, 12, 15, 20, 27, 33, 36, 59, 69, 91, 152, 207, 223, 232, 264, 336, 340, 380, 381, 492, 533, 540, 547, 549, 585, 615, 624, 627, 720, 773, 1009, 1287, 1320, 1428, 1537, 1823, 2093, 2401, 2724, 2733, 2804, 2920, 3316, 3803, 4124, 4132, 4620, 7143, 7520, 7708
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Comments

Most terms of this sequence are multiples of 3, exceptions are 20, 59, 91, 152, 223, 232, 340, 380, 533, 547, 773... corresponding to a(n) with n=5, 9, 11, 12, 14, 15, 18, 19, 22, 24, 31...

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, -9]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,-9)) && print1( i",")) /* use ...subst(polcyclo(i),x,-9)... in PARI < 2.4.2 */

Extensions

a(32)-a(51) by Robert Price, Mar 22 2012
Showing 1-10 of 19 results. Next