A007498 Unique period lengths of primes mentioned in A007615.
1, 2, 3, 4, 9, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 294, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, 4274, 4354
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24.
Links
- Ray Chandler, Table of n, a(n) for n = 1..106
- Chris K. Caldwell, Unique (period) primes and the factorization of cyclotomic polynomials minus one, Mathematica Japonica, 26 (1997), 189-195.
- Chris K. Caldwell & H. Dubner, Unique-Period Primes, Table 2 in Journal of Recreational Mathematics 29(1) 46 1998.
- Robert G. Wilson v, Notes, n.d.
- Index entries for sequences related to decimal expansion of 1/n
Crossrefs
Programs
-
Mathematica
lst={1}; Do[p=Cyclotomic[n, 10]/GCD[n, Cyclotomic[n, 10]]; If[PrimeQ[p], AppendTo[lst, n]], {n, 3000}]; lst (* T. D. Noe, Sep 08 2005 *)
-
PARI
isok(n) = if (n==1, 1, my(p = polcyclo(n, 10)); isprime(p/gcd(p, n))); \\ Michel Marcus, Jun 20 2018
Extensions
More terms from T. D. Noe, Sep 08 2005
a(48)-a(52) from Ray Chandler, Jul 09 2008
Comments