cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A333237 Numbers k such that 1/k contains at least one '9' in its decimal expansion.

Original entry on oeis.org

11, 13, 17, 19, 21, 23, 29, 31, 34, 38, 41, 42, 43, 46, 47, 49, 51, 52, 53, 57, 58, 59, 61, 62, 67, 68, 69, 71, 73, 76, 77, 81, 82, 83, 84, 85, 86, 87, 89, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118
Offset: 1

Views

Author

Andrew Slattery, Mar 12 2020

Keywords

Comments

Almost every prime appears in this sequence.
Among the first 10000 primes, only 2, 3, 5, 7, 37, 79, 239, 4649, and 62003 do not appear in the sequence. - Giovanni Resta, Mar 13 2020
The next primes not in the sequence are 538987, 35121409, and 265371653. - Robert Israel, Mar 18 2020

Examples

			5 is not in the sequence because 1/5 = 0.2 does not contain any 9s.
		

Crossrefs

Cf. A333236.
Subsequences (for terms > 1): A000533, A002275, A135577, A252491.
Cf. A216664 (a subsequence).
Cf. A187614.

Programs

  • Maple
    f:= proc(n) local m,S,r;
       m:= 1; S:= {1};
       do
         r:= floor(m/n);
         if r = 9 then return true fi;
         m:= (m - r*n)*10;
         if member(m,S) then return false fi;
         S:= S union {m};
       od
    end proc:
    select(f, [$1..1000]); # Robert Israel, Mar 18 2020
  • Mathematica
    Select[Range[120], MemberQ[ Flatten@ RealDigits[1/#][[1]], 9] &] (* Giovanni Resta, Mar 12 2020 *)
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A333237_gen(startvalue=1): # generator of terms
        for m in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,m), multiplicity(5,m)
            if max(str(10**(max(m2,m5)+n_order(10,m//2**m2//5**m5))//m)) == '9':
                yield m
    A333237_list = list(islice(A333237_gen(), 10)) # Chai Wah Wu, Feb 07 2022

Formula

A333236(a(n)) = 9.

Extensions

More terms from Giovanni Resta, Mar 12 2020

A352023 Primes p such that 1/p does not contain digit '9' in its decimal expansion.

Original entry on oeis.org

2, 3, 5, 7, 37, 79, 239, 4649, 62003, 538987, 35121409, 265371653
Offset: 1

Views

Author

Bernard Schott, Feb 28 2022

Keywords

Comments

Terms a(1)-a(9) and a(10)-a(12) were respectively found by Giovanni Resta and Robert Israel (comments in A333237).
The corresponding largest digit in the decimal expansion of 1/a(n) is A352024(n).
If it exists, a(13) > 2.7*10^8.
a(13) > 1360682471 (with A187614). - Jinyuan Wang, Mar 03 2022
a(13) <= 5363222357, a(14) <= 77843839397. - David A. Corneth, Mar 03 2022

Examples

			The largest digit in the decimal expansion of 1/7 = 0.142857142857... is 8 < 9, hence 7 is a term.
		

Crossrefs

Subsequence of A187614.

Programs

  • Maple
    f:= proc(n) local m, S, r;
       m:= 1; S:= {1};
       do
         r:= floor(m/n);
         if r = 9 then return true fi;
         m:= (m - r*n)*10;
         if member(m, S) then return false fi;
         S:= S union {m};
       od
    end proc:
    remove(f, [seq(ithprime(i),i=1..10^5)]); # Robert Israel, Mar 16 2022
  • Mathematica
    Select[Range[10^5], PrimeQ[#] && FreeQ[RealDigits[1/#][[1, 1]], 9] &] (* Amiram Eldar, Feb 28 2022 *)
  • PARI
    isok(p) = if (isprime(p), my(m2=valuation(p, 2), m5=valuation(p, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, p/2^m2/5^m5))+1)/p))) < 9); \\ Michel Marcus, Feb 28 2022
    
  • Python
    from sympy import n_order, nextprime
    from itertools import islice
    def A352023_gen(): # generator of terms
        yield from (2,3,5)
        p = 7
        while True:
            if '9' not in str(10**(n_order(10, p))//p):
                yield p
            p = nextprime(p)
    A352023_list = list(islice(A352023_gen(),9)) # Chai Wah Wu, Mar 03 2022

A097209 Primes of the form (10^p + 1)/11 (corresponding p are in A001562).

Original entry on oeis.org

9091, 909091, 909090909090909091, 909090909090909090909090909091, 9090909090909090909090909090909090909090909090909091, 909090909090909090909090909090909090909090909090909090909090909091
Offset: 1

Views

Author

Rick L. Shepherd, Jul 30 2004

Keywords

Comments

Equivalently, primes of the form 9090...9091 (A054416(n)-1 copies of 90 followed by 91), the subsequence of all primes in A095372.
These primes appear in A187614 because the decimal representation of their reciprocal contains only the digits 0, 1, 8, and 9.

Crossrefs

A187372 Numbers k such that the decimal digits of 1/k contain every digit at least once.

Original entry on oeis.org

17, 19, 23, 29, 34, 38, 46, 47, 49, 51, 53, 57, 58, 59, 61, 68, 69, 71, 76, 83, 85, 87, 89, 92, 94, 95, 97, 98, 102, 103, 107, 109, 113, 114, 115, 116, 118, 119, 121, 122, 127, 129, 131, 133, 136, 138, 139, 141, 142, 145, 147, 149, 151, 152, 153, 157, 161, 163, 166, 167, 169, 170, 171, 173, 174, 177, 178, 179, 181, 183, 184, 188
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2011

Keywords

Examples

			17 is in the sequence because 1/17 = .0588235294117647 0588235294117647 ...
contains every digit at least once ;
31 is not in the sequence because 1/31 = .032258064516129 032258064516129...
without the digit 7.
		

Crossrefs

Cf. A187614.

Programs

  • Maple
    with(numtheory):Digits:=200:B:={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: T:=array(1..250)
      : for p from 1 to 200 do:ind:=0:n:=floor(evalf(10^200/p)):l:=length(n):n0:=n:s:=0:for
      m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v : T[m]:=u:od: A:=convert(T,
      set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `, p):else
      fi:od:
  • Mathematica
    A2 := {}; Do[ If[Length[Union[IntegerDigits[Floor[10^200/n]]]] == 10, A2 =
      Join[A2, {n}]], {n, 1, 200}]; Print[A2]

A187868 Primes of the form 100^k - 10^k + 1.

Original entry on oeis.org

9901, 99990001, 999999000001, 9999999900000001
Offset: 1

Views

Author

T. D. Noe, Mar 14 2011

Keywords

Comments

These primes correspond to k = 2, 4, 6, and 8. There are no other primes of this form for k up to 10000. These primes appear in A187614 because the decimal representation of their reciprocal contains only the digits 0, 1, 8, and 9.
Because these numbers are values of the sixth cyclotomic polynomial, by Theorem 1 of Golomb, the only k that can produce primes are the 3-smooth numbers, 2^i*3^j (A003586).
Next term has k > 1000000. - Robert Gelhar, Aug 20 2020

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 85.

Crossrefs

Programs

  • Mathematica
    Select[Table[100^n - 10^n + 1, {n, 1000}], PrimeQ]

A352024 Largest digit in the decimal expansion of 1/A352023(n).

Original entry on oeis.org

5, 3, 2, 8, 7, 8, 8, 5, 8, 8, 8, 8
Offset: 1

Views

Author

Bernard Schott, Mar 01 2022

Keywords

Comments

All terms are < 9.
A352023(13) <= 5363222357 and A352023(14) <= 77843839397, in both cases, the corresponding largest digit in the decimal expansion of the inverse is 8.

Examples

			A352023(5) = 37, the largest digit in the decimal expansion of 1/37 = 0.027027027027027... is 7, hence a(5) = 7.
		

Crossrefs

Formula

a(n) = A333236(A352023(n)). - Amiram Eldar, Mar 02 2022
Showing 1-6 of 6 results.