cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A352023 Primes p such that 1/p does not contain digit '9' in its decimal expansion.

Original entry on oeis.org

2, 3, 5, 7, 37, 79, 239, 4649, 62003, 538987, 35121409, 265371653
Offset: 1

Views

Author

Bernard Schott, Feb 28 2022

Keywords

Comments

Terms a(1)-a(9) and a(10)-a(12) were respectively found by Giovanni Resta and Robert Israel (comments in A333237).
The corresponding largest digit in the decimal expansion of 1/a(n) is A352024(n).
If it exists, a(13) > 2.7*10^8.
a(13) > 1360682471 (with A187614). - Jinyuan Wang, Mar 03 2022
a(13) <= 5363222357, a(14) <= 77843839397. - David A. Corneth, Mar 03 2022

Examples

			The largest digit in the decimal expansion of 1/7 = 0.142857142857... is 8 < 9, hence 7 is a term.
		

Crossrefs

Subsequence of A187614.

Programs

  • Maple
    f:= proc(n) local m, S, r;
       m:= 1; S:= {1};
       do
         r:= floor(m/n);
         if r = 9 then return true fi;
         m:= (m - r*n)*10;
         if member(m, S) then return false fi;
         S:= S union {m};
       od
    end proc:
    remove(f, [seq(ithprime(i),i=1..10^5)]); # Robert Israel, Mar 16 2022
  • Mathematica
    Select[Range[10^5], PrimeQ[#] && FreeQ[RealDigits[1/#][[1, 1]], 9] &] (* Amiram Eldar, Feb 28 2022 *)
  • PARI
    isok(p) = if (isprime(p), my(m2=valuation(p, 2), m5=valuation(p, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, p/2^m2/5^m5))+1)/p))) < 9); \\ Michel Marcus, Feb 28 2022
    
  • Python
    from sympy import n_order, nextprime
    from itertools import islice
    def A352023_gen(): # generator of terms
        yield from (2,3,5)
        p = 7
        while True:
            if '9' not in str(10**(n_order(10, p))//p):
                yield p
            p = nextprime(p)
    A352023_list = list(islice(A352023_gen(),9)) # Chai Wah Wu, Mar 03 2022
Showing 1-1 of 1 results.