cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 99 results. Next

A002496 Primes of the form k^2 + 1.

Original entry on oeis.org

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence is infinite, but this has never been proved.
An equivalent description: primes of form P = (p1*p2*...*pm)^k + 1 where p1..pm are primes and k > 1, since then k must be even for P to be prime.
Also prime = p(n) if A054269(n) = 1, i.e., quotient-cycle-length = 1 in continued fraction expansion of sqrt(p). - Labos Elemer, Feb 21 2001
Also primes p such that phi(p) is a square.
Also primes of form x*y + z, where x, y and z are three successive numbers. - Giovanni Teofilatto, Jun 05 2004
It is a result that goes back to Mirsky that the set of primes p for which p-1 is squarefree has density A, where A = A005596 denotes the Artin constant. More precisely, Sum_{p <= x} mu(p-1)^2 = A*x/log x + o(x/log x) as x tends to infinity. Conjecture: Sum_{p <= x, mu(p-1)=1} 1 = (A/2)*x/log x + o(x/log x) and Sum_{p <= x, mu(p-1)=-1} 1 = (A/2)*x/log x + o(x/log x). - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Also primes of the form x^y + 1, where x > 0, y > 1. Primes of the form x^y - 1 (x > 0, y > 1) are the Mersenne primes listed in A000668(n) = {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ...}. - Alexander Adamchuk, Mar 04 2007
With the exception of the first two terms {2,5}, the continued fraction (1 + sqrt(p))/2 has period 3. - Artur Jasinski, Feb 03 2010
With the exception of the first term {2}, congruent to 1 (mod 4). - Artur Jasinski, Mar 22 2011
With the exception of the first two terms, congruent to 1 or 17 (mod 20). - Robert Israel, Oct 14 2014
From Bernard Schott, Mar 22 2019: (Start)
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is a square: A054755. So this sequence is a subsequence of A054755 and of A039770. Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.
If p prime = n^2 + 1, phi(p) = n^2 and cototient(p) = 1^2.
Except for 3, the four Fermat primes in A019434 {5, 17, 257, 65537}, belong to this sequence; with F_k = 2^(2^k) + 1, phi(F_k) = (2^(2^(k-1)))^2.
See the file "Subfamilies and subsequences" (& I) in A039770 for more details, proofs with data, comments, formulas and examples. (End)
In this sequence, primes ending with 7 seem to appear twice as often as primes ending with 1. This is because those with 7 come from integers ending with 4 or 6, while those with 1 come only from integers ending with 0 (see De Koninck & Mercier reference). - Bernard Schott, Nov 29 2020
The set of odd primes p for which every elliptic curve of the form y^2 = x^3 + d*x has order p-1 over GF(p) for those d with (d,p)=1 and d a fourth power modulo p. - Gary Walsh, Sep 01 2021 [edited, Gary Walsh, Apr 26 2025]

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 211 pp. 34 and 169, Ellipses, Paris, 2004.
  • Leonhard Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 22.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • C. Stanley Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Cf. A083844 (number of these primes < 10^n), A199401 (growth constant).
Cf. A000668 (Mersenne primes), A019434 (Fermat primes).
Subsequence of A039770.
Cf. A010051, subsequence of A002522.
Cf. A237040 (an analog for n^3 + 1).
Cf. A010051, A000290; subsequence of A028916.
Subsequence of A039770, A054754, A054755, A063752.
Primes of form n^2+b^4, b fixed: A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).
Cf. A030430 (primes ending with 1), A030432 (primes ending with 7).

Programs

  • Haskell
    a002496 n = a002496_list !! (n-1)
    a002496_list = filter ((== 1) . a010051') a002522_list
    -- Reinhard Zumkeller, May 06 2013
    
  • Magma
    [p: p in PrimesUpTo(100000)| IsSquare(p-1)]; // Vincenzo Librandi, Apr 09 2011
    
  • Maple
    select(isprime, [2, seq(4*i^2+1, i= 1..1000)]); # Robert Israel, Oct 14 2014
  • Mathematica
    Select[Range[100]^2+1, PrimeQ]
    Join[{2},Select[Range[2,300,2]^2+1,PrimeQ]] (* Harvey P. Dale, Dec 18 2018 *)
  • PARI
    isA002496(n) = isprime(n) && issquare(n-1) \\ Michael B. Porter, Mar 21 2010
    
  • PARI
    is_A002496(n)=issquare(n-1)&&isprime(n) \\ For "random" numbers in the range 10^10 and beyond, at least 5 times faster than the above. - M. F. Hasler, Oct 14 2014
    
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    from sympy import isprime
    A002496_list = [n+1 for n in accumulate(range(10**5),lambda x,y:x+2*y-1) if isprime(n+1)] # Chai Wah Wu, Sep 23 2014
    
  • Python
    # Python 2.4 or higher required
    from sympy import isprime
    A002496_list = list(filter(isprime, (n*n+1 for n in range(10**5)))) # David Radcliffe, Jun 26 2016

Formula

There are O(sqrt(n)/log(n)) terms of this sequence up to n. But this is just an upper bound. See the Bateman-Horn or Wolf papers, for example, for the conjectured for what is believed to be the correct density.
a(n) = 1 + A005574(n)^2. - R. J. Mathar, Jul 31 2015
Sum_{n>=1} 1/a(n) = A172168. - Amiram Eldar, Nov 14 2020
a(n+1) = 4*A001912(n)^2 + 1. - Hal M. Switkay, Apr 03 2022

Extensions

Formula, reference, and comment from Charles R Greathouse IV, Aug 24 2009
Edited by M. F. Hasler, Oct 14 2014

A001122 Primes with primitive root 2.

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797
Offset: 1

Views

Author

Keywords

Comments

Artin conjectured that this sequence is infinite.
Conjecture: sequence contains infinitely many pairs of twin primes. - Benoit Cloitre, May 08 2003
Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis, it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed, exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
It seems that this sequence consists of A050229 \ {1,2}.
Primes p such that 1/p, when written in base 2, has period p-1, which is the greatest period possible for any integer.
Positive integer 2*m-1 is in the sequence iff A179382(m)=m-1. - Vladimir Shevelev, Jul 14 2010
These are the odd primes p for which the polynomial 1+x+x^2+...+x^(p-1) is irreducible over GF(2). - V. Raman, Sep 17 2012 [Corrected by N. J. A. Sloane, Oct 17 2012]
Prime(n) is in the sequence if (and conjecturally only if) A133954(n) = prime(n). - Vladimir Shevelev, Aug 30 2013
Pollack shows that, on the GRH, that there is some C such that a(n+1) - a(n) < C infinitely often (in fact, 1 can be replaced by any positive integer). Further, for any m, a(n), a(n+1), ..., a(n+m) are consecutive primes infinitely often. - Charles R Greathouse IV, Jan 05 2015
From Jianing Song, Apr 27 2019: (Start)
All terms are congruent to 3 or 5 modulo 8. If we define
Pi(N,b) = # {p prime, p <= N, p == b (mod 8)};
Q(N) = # {p prime, p <= N, p in this sequence},
then by Artin's conjecture, Q(N) ~ C*N/log(N) ~ 2*C*(Pi(N,3) + Pi(N,5)), where C = A005596 is Artin's constant.
Conjecture: if we further define
Q(N,b) = # {p prime, p <= N, p == b (mod 8), p in this sequence},
then we have:
Q(N,3) ~ (1/2)*Q(N) ~ C*Pi(N,3);
Q(N,5) ~ (1/2)*Q(N) ~ C*Pi(N,5). (End)
Conjecture: for a prime p > 5, p has primitive root 2 iff p == +-3 (mod 8) divides 2^k + 3 for some k < p - 1 and divides 2^m + 5 for some m < p - 1. It seems that all primes of the form 2^k + 3 for k <> 2 (A057732) have primitive root 2. - Thomas Ordowski, Nov 27 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56.
  • Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 20.
  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002326 for the multiplicative order of 2 mod 2n+1. (Alternatively, the least positive value of m such that 2n+1 divides 2^m-1).
Cf. A216838 (Odd primes for which 2 is not a primitive root).

Programs

  • Mathematica
    Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *)
    pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p,", "))); \\ [corrected by Michel Marcus, Oct 08 2014]
    
  • Python
    from itertools import islice
    from sympy import nextprime, is_primitive_root
    def A001122_gen(): # generator of terms
        p = 2
        while (p:=nextprime(p)):
            if is_primitive_root(2,p):
                yield p
    A001122_list = list(islice(A001122_gen(),30)) # Chai Wah Wu, Feb 13 2023

Formula

Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013
For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A001913 Full reptend primes: primes with primitive root 10.

Original entry on oeis.org

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983
Offset: 1

Views

Author

Keywords

Comments

Primes p such that the decimal expansion of 1/p has period p-1, which is the greatest period possible for any integer.
Primes p such that the corresponding entry in A002371 is p-1.
Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
R. K. Guy writes (Oct 20 2004): MR 2004j:11141 speaks of the unearthing by Lenstra & Stevenhagen of correspondence concerning the density of this sequence between the Lehmers & Artin.
Also called long period primes, long primes or maximal period primes.
The base-10 cyclic numbers A180340, (b^(p-1) - 1) / p, with b = 10, are obtained from the full reptend primes p. - Daniel Forgues, Dec 17 2012
The number of terms < 10^n: A086018(n). - Robert G. Wilson v, Aug 18 2014

Examples

			7 is in the sequence because 1/7 = 0.142857142857... and the period = 7-1 = 6.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 161.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 380.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 115.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
  • H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), Ch. 19, 'Die periodischen Dezimalbrüche'.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, identical to A006883.
Other definitions of cyclic numbers: A003277, A001914, A180340.

Programs

  • Maple
    A001913 := proc(n) local st, period:
    st := ithprime(n):
    period := numtheory[order](10,st):
    if (st-1 = period) then
       RETURN(st):
    fi: end:  seq(A001913(n), n=1..200); # Jani Melik, Feb 25 2011
  • Mathematica
    pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
    (* Second program: *)
    Join[{7},Select[Prime[Range[300]],PrimitiveRoot[#,10]==10&]] (* Harvey P. Dale, Feb 01 2018 *)
  • PARI
    forprime(p=7,1e3,if(znorder(Mod(10,p))+1==p,print1(p", "))) \\ Charles R Greathouse IV, Feb 27 2011
    
  • PARI
    is(n)=Mod(10,n)^(n\2)==-1 && isprime(n) && znorder(Mod(10,n))+1==n \\ Charles R Greathouse IV, Oct 24 2013
    
  • Python
    from itertools import count, islice
    from sympy import nextprime, n_order
    def A001913_gen(startvalue=1): # generator of terms >= startvalue
        p = max(startvalue-1,1)
        while (p:=nextprime(p)):
            if p!=2 and p!=5 and n_order(10,p)==p-1:
                yield p
    A001913_list = list(islice(A001913_gen(),20)) # Chai Wah Wu, Mar 03 2025

A036689 Product of a prime and the previous number.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1

Views

Author

Keywords

Comments

Records in A002618. - Artur Jasinski, Jan 23 2008
Also records in A174857. - Vladimir Shevelev, Mar 31 2010

Examples

			2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
		

Crossrefs

Twice the terms of A008837.
Subsequence of A002378 (oblong numbers).
Column 1 of A257251. (Row 1 of A257252.)
Column 2 of A379010.

Programs

Formula

a(n) = prime(n) * (prime(n) - 1).
a(n) = phi(prime(n)^2) = A000010(A001248(n)).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A000040(n) * A006093(n) = A001248(n) - A000040(n).
A006530(a(n)) = A000040(n). (End)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)

Extensions

Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020

A008330 phi(p-1), as p runs through the primes.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 6, 10, 12, 8, 12, 16, 12, 22, 24, 28, 16, 20, 24, 24, 24, 40, 40, 32, 40, 32, 52, 36, 48, 36, 48, 64, 44, 72, 40, 48, 54, 82, 84, 88, 48, 72, 64, 84, 60, 48, 72, 112, 72, 112, 96, 64, 100, 128, 130, 132, 72, 88, 96, 92, 144, 96, 120, 96, 156, 80, 96, 172, 112
Offset: 1

Views

Author

Keywords

Comments

Number of primitive roots in the field with p elements.
Kátai proves that phi(p-1)/(p-1) has a continuous distribution function. - Charles R Greathouse IV, Jul 15 2013
For odd primes p, phi(p-1)<=(p-1)/2 since p has phi(p-1) primitive roots and (p-1)/2 quadratic residues and no primitive root is a quadratic residue. - Geoffrey Critzer, Apr 18 2015

References

  • D. H. Lehmer and Emma Lehmer, "Heuristics Anyone?", in: G. Szegö et al. (eds.), Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Pólya, Stanford University Press, 1962, pp. 202-210.

Crossrefs

Cf. A000010, A005596, A241194, A241195 (fraction phi(p-1)/(p-1)), A338364 (partial products).

Programs

Formula

a(n) = phi(phi(prime(n))). - Robert G. Wilson v, Dec 26 2015
a(n) = phi(A006093(n)). - Michel Marcus, Dec 27 2015
Sum_{k; prime(k) <= x} a(k)/(prime(k)-1) = A * li(x) + O(x/log(x)^D), where A is Artin's constant (A005596), li(x) is the logarithmic integral, and D > 1 (Pillai, 1941; Lehmer and Lehmer 1962; Stephens, 1969). - Amiram Eldar, Jul 23 2025

A007350 Where the prime race 4k-1 vs. 4k+1 changes leader.

Original entry on oeis.org

3, 26861, 26879, 616841, 617039, 617269, 617471, 617521, 617587, 617689, 617723, 622813, 623387, 623401, 623851, 623933, 624031, 624097, 624191, 624241, 624259, 626929, 626963, 627353, 627391, 627449, 627511, 627733, 627919, 628013, 628427, 628937, 629371
Offset: 1

Views

Author

Keywords

Comments

The following references include some on the "prime race" question that are not necessarily related to this particular sequence. - N. J. A. Sloane, May 22 2006
Starting from a(12502) = A051025(27556) = 9103362505801, the sequence includes the 8th sign-changing zone predicted by C. Bays et al. The sequence with the first 8 sign-changing zones contains 194367 terms (see a-file) with a(194367) = 9543313015387 as its last term. - Sergei D. Shchebetov, Oct 13 2017

References

  • Ford, Kevin; Konyagin, Sergei; Chebyshev's conjecture and the prime number race. IV International Conference "Modern Problems of Number Theory and its Applications": Current Problems, Part II (Russian) (Tula, 2001), 67-91.
  • Granville, Andrew; Martin, Greg; Prime number races. (Spanish) With appendices by Giuliana Davidoff and Michael Guy. Gac. R. Soc. Mat. Esp. 8 (2005), no. 1, 197-240.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A156749 [sequence showing Chebyshev bias in prime races (mod 4)]. - Daniel Forgues, Mar 26 2009

Programs

  • Mathematica
    lim = 10^5; k1 = 0; k3 = 0; t = Table[{p = Prime[k], If[Mod[p, 4] == 1, ++k1, k1], If[Mod[p, 4] == 3, ++k3, k3]}, {k, 2, lim}]; A007350 = {3}; Do[ If[t[[k-1, 2]] < t[[k-1, 3]] && t[[k, 2]] == t[[k, 3]] && t[[k+1, 2]] > t[[k+1, 3]] || t[[k-1, 2]] > t[[k-1, 3]] && t[[k, 2]] == t[[k, 3]] && t[[k+1, 2]] < t[[k+1, 3]], AppendTo[A007350, t[[k+1, 1]]]], {k, 2, Length[t]-1}]; A007350 (* Jean-François Alcover, Sep 07 2011 *)
    lim = 10^5; k1 = 0; k3 = 0; p = 2; t = {}; parity = Mod[p, 4]; Do[p = NextPrime[p]; If[Mod[p, 4] == 1, k1++, k3++]; If[(k1 - k3)*(parity - Mod[p, 4]) > 0, AppendTo[t, p]; parity = Mod[p, 4]], {lim}]; t (* T. D. Noe, Sep 07 2011 *)

A112526 Characteristic function for powerful numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

A signed multiplicative variant is defined by b(n) = a(n)*mu(n) with mu = A008683, such that b(p^e)=0 if e=1 and b(p^e)= -1 if e>1. This has Dirichlet series Sum_{n>=1} b(n)/n = A005596 and Sum_{n>=1} b(n)/n^2 = A065471. - R. J. Mathar, Apr 04 2011

Examples

			a(72) = 1 because 72 = 2^3*3^2 has all exponents > 1.
		

Crossrefs

Differs from characteristic function of perfect powers A075802 at Achilles numbers A052486.
Cf. A001694 (powerful numbers), A124010, A001221, A027746.

Programs

  • Haskell
    a112526 1 = 1
    a112526 n = fromEnum $ (> 1) $ minimum $ a124010_row n
    -- Reinhard Zumkeller, Jun 03 2015, Sep 16 2011
    
  • Mathematica
    cfpn[n_]:=If[n==1||Min[Transpose[FactorInteger[n]][[2]]]>1,1,0]; Array[ cfpn,120] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X^3)/(1-X^2))[n], ", ")) \\ Vaclav Kotesovec, Jul 15 2022
    
  • PARI
    a(n) = ispowerful(n); \\ Amiram Eldar, Jul 02 2025
    
  • Python
    from sympy import factorint
    def A112526(n): return int(all(e>1 for e in factorint(n).values())) # Chai Wah Wu, Sep 15 2024

Formula

Multiplicative with a(p^e) = 1 - 0^(e-1), e > 0 and p prime.
Dirichlet g.f.: zeta(2*s)*zeta(3*s)/zeta(6*s), e.g., A082695 at s=1.
a(n) * A008966(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = {m: Min{A124010(m,k): k=1..A001221(m)} > 1}. - Reinhard Zumkeller, Jun 03 2015
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)/zeta(3) + 6*zeta(2/3)*n^(1/3)/Pi^2. - Vaclav Kotesovec, Feb 08 2019
a(n) = Sum_{d|n} A005361(d)*A008683(n/d). - Ridouane Oudra, Jul 03 2025

A019334 Primes with primitive root 3.

Original entry on oeis.org

2, 5, 7, 17, 19, 29, 31, 43, 53, 79, 89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233, 257, 269, 281, 283, 293, 317, 331, 353, 379, 389, 401, 449, 461, 463, 487, 509, 521, 557, 569, 571, 593, 607, 617, 631, 641, 653, 677, 691, 701, 739, 751, 773, 797
Offset: 1

Views

Author

Keywords

Comments

To allow primes less than the specified primitive root m (here, 3) to be included, we use the essentially equivalent definition "Primes p such that the multiplicative order of m mod p is p-1". This comment applies to all of A019334-A019421. - N. J. A. Sloane, Dec 02 2019
From Jianing Song, Apr 27 2019: (Start)
All terms except the first are congruent to 5 or 7 modulo 12. If we define
Pi(N,b) = # {p prime, p <= N, p == b (mod 12)};
Q(N) = # {p prime, 2 < p <= N, p in this sequence},
then by Artin's conjecture, Q(N) ~ C*N/log(N) ~ 2*C*(Pi(N,5) + Pi(N,7)), where C = A005596 is Artin's constant.
If we further define
Q(N,b) = # {p prime, p <= N, p == b (mod 12), p in this sequence},
then we have:
Q(N,5) ~ (3/5)*Q(N) ~ (12/5)*C*Pi(N,5);
Q(N,7) ~ (2/5)*Q(N) ~ ( 8/5)*C*Pi(N,7).
For example, for the first 1000 terms except for a(1) = 2, there are 593 terms == 5 (mod 12) and 406 terms == 7 (mod 12). (End)

Crossrefs

Cf. A005596, A001122 (primitive root 2).

Programs

  • Mathematica
    pr=3; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
  • PARI
    isok(p) = isprime(p) && (p!=3) && (znorder(Mod(3, p))+1 == p); \\ Michel Marcus, May 12 2019

A006883 Long period primes: the decimal expansion of 1/p has period p-1.

Original entry on oeis.org

2, 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863
Offset: 1

Views

Author

Keywords

Comments

Also called full reptend primes or maximal period primes.
Also called golden primes or long primes.
Here, as opposed to A001913, 2 is a term, because the decimal expansion of 1/2 is 0.5000000000..., so it is periodic with period 1 and pattern 0. - Michel Marcus, Jun 06 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 161.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae"
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 115.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
  • D. H. Lehmer, A note on primitive roots, Scripta Mathematica, vol. 26 (1963), p. 117. [Gives some interesting information about the frequency of maximal period primes and discusses two freak cases.]
  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 56-58.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, identical to A001913.
Cf. A001122 (long period primes in binary).

Programs

  • Maple
    isA006883 := proc(p) if p = 2 then true; elif isprime(p) then RETURN( numtheory[order](10,p) = p-1) ; else false; fi; end: for i from 1 to 300 do p := ithprime(i) ; if isA006883(p) then printf("%d ",p) ; fi; od: # R. J. Mathar, Apr 01 2009
  • Mathematica
    f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 150]], f[ # ] == 1 &] (* Robert G. Wilson v, Sep 14 2004 *)
    maxPeriodQ[p_] := MultiplicativeOrder[10, p] == p-1; maxPeriodQ[2] = True; Select[ Prime[ Range[150]], maxPeriodQ] (* Jean-François Alcover, Jan 07 2013 *)
  • PARI
    print1(2);forprime(p=7,1e3,if(znorder(Mod(10,p))+1==p,print1(", "p))) \\ Charles R Greathouse IV, Feb 27 2011

Formula

From Gerard Schildberger, Jul 02 2005: (Start)
Emil Artin conjectured that the proportion of primes that belong to this sequence can be expressed as:
(2*1-1)(3*2-1)(5*4-1)(7*6-1)(11*10-1)(13*12-1)...
------------------------------------------------- = 0.373955813619202288...
(2*1)(3*2)(5*4)(7*6)(11*10)(13*12)...
(End)
This Artin's constant, Product_{p prime} (1-1/(p^2-p)), is referenced in A005596. - Robert FERREOL, Jun 05 2018

Extensions

More terms from James Sellers, Aug 21 2000
Additional comments from Jason Earls, Apr 06 2001
Showing 1-10 of 99 results. Next