A001915 Primes p such that the congruence 2^x == 3 (mod p) is solvable.
2, 5, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 83, 97, 101, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 211, 227, 239, 263, 269, 293, 307, 311, 313, 317, 347, 349, 359, 373, 379, 383, 389, 409, 419, 421, 431, 443, 461, 467, 479, 491, 499, 503, 509, 523
Offset: 1
References
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 63.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Xianwen Wang, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- G. Polya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, J. reine und angewandte Mathematik (Crelle), Volume 1921, Issue 151, Pages 1-31.
Programs
-
Maple
N:= 1000: # to search the first N primes {2} union select(t -> numtheory[mlog](3,2,p) <> FAIL, {seq(ithprime(n),n=2..N)}); # Robert Israel, Feb 15 2013
-
Mathematica
Select[Prime[Range[120]], MemberQ[Table[Mod[2^x-3, #], {x, 0, #}], 0]&] (* Jean-François Alcover, Aug 29 2011 *) Monitor[aaa=Reap[Do[p=Prime[m];sol=MultiplicativeOrder[2,p,{3}];If[IntegerQ[sol],Sow[p]],{m,1000}]],{m}];tmp=Transpose[{1+Range[Length[aaa[[2,1]]]],aaa[[2,1]]}] (* Xianwen Wang, Jul 22 2025 *)
-
PARI
isok(p) = isprime(p) && sum(k=0, (p-1), Mod(2, p)^k == 3); \\ Michel Marcus, Mar 12 2017
-
PARI
is(n)=isprime(n) && (n==2 || #znlog(3, Mod(2, n))) \\ Charles R Greathouse IV, Aug 15 2018
Extensions
Better description from Joe K. Crump (joecr(AT)carolina.rr.com), Dec 11 2000
More terms from David W. Wilson, Dec 12 2000
Comments