cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001918 Least positive primitive root of n-th prime.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Keywords

Comments

If k is a primitive root of p=4m+1, then p-k is too. If k is a primitive root of p=4m+3, then p-k isn't, but has order 2m+1. - Jon Perry, Sep 07 2014

Examples

			modulo 7: 3^6=1, 3^2=2, 3^7=3, 3^4=4, 3^5=5, 3^3=6, 7=prime(4), 3=a(4).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 213.
  • CRC Handbook of Combinatorial Designs, 1996, p. 615.
  • P. Fan and M. Darnell, Sequence Design for Communications Applications, Wiley, NY, 1996, Table A.1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 111.
  • Hua Loo Keng, Introduction To Number Theory, 'Table of least primitive roots for primes less than 50000', pp. 52-6, Springer NY 1982.
  • R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 20.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A060749. Cf. A002233.

Programs

  • Maple
    A001918 := proc(n)
            numtheory[primroot](ithprime(n)) ;
    end proc:
  • Mathematica
    Table[PrimitiveRoot@Prime@n, {n, 101}] (* Robert G. Wilson v, Dec 15 2005 *)
    PrimitiveRoot[Prime[Range[110]]] (* Harvey P. Dale, Jan 13 2013 *)
  • PARI
    for(x=1, 1000, print1(lift(znprimroot(prime(x))), ", "))
    
  • Python
    from sympy import prime
    from sympy.ntheory.residue_ntheory import primitive_root
    def A001918(n): return primitive_root(prime(n)) # Chai Wah Wu, Sep 13 2022
  • Sage
    [primitive_root(p) for p in primes(570)] # Zerinvary Lajos, May 24 2009