cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001927 Number of connected partially ordered sets with n labeled points.

Original entry on oeis.org

1, 1, 2, 12, 146, 3060, 101642, 5106612, 377403266, 40299722580, 6138497261882, 1320327172853172, 397571105288091506, 166330355795371103700, 96036130723851671469482, 76070282980382554147600692, 82226869197428315925408327266, 120722306604121583767045993825620, 239727397782668638856762574296226842
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000112, A001035, A000608, A066303, A342501 (refined by rank).
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
    max = Length[A001035]-1;
    B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
    A[x_] = 1 + Log[B[x]];
    CoefficientList[A[x] + O[x]^(max-1), x]*Range[0, max-2]! (* Jean-François Alcover, Apr 17 2014, updated Aug 30 2018 *)

Formula

E.g.f. A(x)=log(B(x)) where B(x) is e.g.f. of A001035.

Extensions

More terms from Christian G. Bower, Dec 12 2001
a(17)-a(18) using data from A001035 from Alois P. Heinz, Aug 30 2018