cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001929 Number of connected topologies on n labeled points.

Original entry on oeis.org

1, 1, 3, 19, 233, 4851, 158175, 7724333, 550898367, 56536880923, 8267519506789, 1709320029453719, 496139872875425839, 200807248677750187825, 112602879608997769049739, 86955243134629606109442219, 91962123875462441868790125305, 132524871920295877733718959290203, 259048612476248175744581063815546423
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
    max = Length[A001035]-1;
    B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
    A[x_] = 1 + Log[B[x]];
    A001927 = CoefficientList[ A[x] + O[x]^(max-1), x]*Range[0, max-2]!;
    a[n_] := Sum[StirlingS2[n, k] *A001927[[k+1]], {k, 0, n}];
    Table[a[n], {n, 0, max -2}] (* Jean-François Alcover, Aug 30 2018, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A001927(k). - Vladeta Jovovic, Apr 10 2006

Extensions

More terms from Vladeta Jovovic, Apr 10 2006
a(17)-a(18) using data from A001035 from Alois P. Heinz, Aug 30 2018