A001986 Let p be the n-th odd prime. Then a(n) is the least prime congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.
19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 222643, 1333963, 1333963, 2404147, 2404147, 20950603, 51599563, 51599563, 96295483, 96295483, 146161723, 1408126003, 3341091163, 3341091163, 3341091163, 52947440683, 52947440683, 52947440683, 193310265163
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..56
- Michael John Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995.
- Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
Crossrefs
Programs
-
PARI
isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(-p, q) != -1, return (0));); return (1);} a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 3, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 17 2017
Extensions
Revised by N. J. A. Sloane, Jun 14 2004
a(28)-a(30) from Jinyuan Wang, Apr 09 2020
Comments