A001992 Let p = n-th odd prime. Then a(n) = least prime congruent to 5 modulo 8 such that Legendre(a(n), q) = -1 for all odd primes q <= p.
5, 53, 173, 173, 293, 2477, 9173, 9173, 61613, 74093, 74093, 74093, 170957, 360293, 679733, 2004917, 2004917, 69009533, 138473837, 237536213, 384479933, 883597853, 1728061733, 1728061733, 1728061733, 1728061733
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael John Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995.
- Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451. [There is an error in the table given in this paper.]
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
Crossrefs
Programs
-
PARI
isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -1, return (0));); return (1);} a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 17 2017
Extensions
Corrected and extended by N. J. A. Sloane, Jun 14 2004
Comments