cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094852 Records in A001992.

Original entry on oeis.org

5, 53, 173, 293, 2477, 9173, 61613, 74093, 170957, 360293, 679733, 2004917, 69009533, 138473837, 237536213, 384479933, 883597853, 1728061733, 9447241877, 49107823133, 1843103135837, 4316096218013, 15021875771117, 82409880589277, 326813126363093, 390894884910197, 1051212848890277
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Crossrefs

A094851 Class numbers associated with entries of A001992.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 9, 1, 1, 3, 3, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Crossrefs

Cf. A001992.

A001986 Let p be the n-th odd prime. Then a(n) is the least prime congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 222643, 1333963, 1333963, 2404147, 2404147, 20950603, 51599563, 51599563, 96295483, 96295483, 146161723, 1408126003, 3341091163, 3341091163, 3341091163, 52947440683, 52947440683, 52947440683, 193310265163
Offset: 1

Views

Author

Keywords

Comments

Numbers so far are all congruent to 19 mod 24. - Ralf Stephan, Jul 07 2003
All terms are congruent to 19 mod 24. - Jianing Song, Feb 17 2019
Also a(n) is the least prime r congruent to 3 mod 8 such that the first n odd primes are quadratic nonresidues modulo r. Note that r == 3 (mod 8) implies 2 is a quadratic nonresidue modulo r. See A001992 for the case where r == 5 (mod 8). - Jianing Song, Feb 19 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001992 (the congruent to 5 mod 8 case), A094851, A094852, A094853.
See A094841, A094842, A094843, A094844 for the case where the terms are not restricted to the primes.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(-p, q) != -1, return (0));); return (1);}
    a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 3, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 17 2017

Extensions

Revised by N. J. A. Sloane, Jun 14 2004
a(28)-a(30) from Jinyuan Wang, Apr 09 2020

A094847 Let p = n-th odd prime. Then a(n) = least positive integer congruent to 5 modulo 8 such that Legendre(a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

5, 53, 173, 173, 293, 437, 9173, 9173, 24653, 74093, 74093, 74093, 170957, 214037, 214037, 214037, 2004917, 44401013, 71148173, 154554077, 154554077, 163520117, 163520117, 163520117, 261153653, 261153653, 1728061733
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Comments

With an initial a(0) = 5, a(n) is the least fundamental discriminant D > 1 such that the first n + 1 primes are inert in the real quadratic field with discriminant D. See A094841 for the imaginary quadratic field case. - Jianing Song, Feb 15 2019
All terms are congruent to 5 mod 24. - Jianing Song, Feb 17 2019

Crossrefs

Cf. A094841 (the imaginary quadratic field case), A094842, A094843, A094844.
See A001992, A094851, A094852, A094853 for the case where the terms are restricted to the primes.

Programs

  • PARI
    isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(m, q) != -1, return (0));); return (1);}
    a(n) = {oddpn = prime(n+1); m = 5; while(! isok(m, oddpn), m += 8); m;} \\ Michel Marcus, Oct 17 2017

A191089 Least prime p such that the first n primes are not squares mod p.

Original entry on oeis.org

3, 5, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 74093, 170957, 360293, 679733, 2004917, 2004917, 51599563, 51599563, 96295483, 96295483, 146161723, 1408126003, 1728061733, 1728061733, 1728061733, 1728061733, 1728061733, 1728061733
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

That is, the first n primes are quadratic non-residues mod p. A less restrictive form of A001992. Sequence A191088 is similar, but allows p to be composite. See A147972 for the square version.

Crossrefs

Programs

  • Mathematica
    Table[p = 2; While[Length[Select[Prime[Range[n]], JacobiSymbol[#, p] == -1 &]] < n, p = NextPrime[p]]; p, {n, 15}]
  • PARI
    q=2;forprime(k=3,1e9,forprime(p=2,q,if(kronecker(p,k)>=0,next(2)));print1(k", ");q=nextprime(q+1);k--) \\ Charles R Greathouse IV, Oct 10 2011

Extensions

a(16)-a(30) from Charles R Greathouse IV, Oct 10 2011
Showing 1-5 of 5 results.