cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094849 Records in A094847.

Original entry on oeis.org

5, 53, 173, 293, 437, 9173, 24653, 74093, 170957, 214037, 2004917, 44401013, 71148173, 154554077, 163520117, 261153653, 1728061733, 9447241877, 19553206613, 49107823133, 385995595277, 13213747959653, 14506773263237, 57824199003317, 160909740894437, 370095509388197, 1409029796180597, 4075316253649373, 18974003020179917, 224117990614052477, 637754768063384837, 4472988326827347533
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Crossrefs

A094848 Class numbers associated with entries in A094847.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 5, 5, 5, 3, 2, 2, 2, 3, 2, 6, 2, 2, 9, 9, 9, 3, 3, 1, 1, 1, 7, 2, 1, 1, 2, 2, 2, 2, 1, 1, 4, 4, 4, 4, 2, 1, 1, 4, 4, 4, 4, 4, 3, 3, 3, 12, 12, 12, 12, 12
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Crossrefs

Cf. A094847.

A094841 Let p = n-th odd prime. Then a(n) = least positive integer congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 77683, 77683, 1333963, 2404147, 2404147, 20950603, 36254563, 51599563, 96295483, 96295483, 114148483, 269497867, 269497867, 269497867, 269497867, 585811843, 52947440683
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2004

Keywords

Comments

(a(n-1) + 1)/4 is the least positive integer c such that x^2 + x + c is not divisible by the first n primes. This implies that a(n) is congruent to 19 mod 24 and that a(n) is congruent to 43 or 67 mod 120 for n > 1. - William P. Orrick, Mar 19 2017
With an initial a(0) = 3, a(n) is the negated fundamental discriminant D < 0 with the least absolute value such that the first n + 1 primes are inert in the imaginary quadratic field with discriminant D. See A094847 for the real discriminant case. - Jianing Song, Feb 15 2019

Crossrefs

Cf. A094847 (the real quadratic field case), A094848, A094849, A094850.
See A001986, A001987, A094845, A094846 for the case where the terms are restricted to the primes.
Cf. also A181667.

Programs

  • PARI
    isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(-m, q) != -1, return (0));); return (1);}
    a(n) = {oddpn = prime(n+1); m = 3; while(! isok(m, oddpn), m += 8); m;} \\ Michel Marcus, Oct 17 2017

Formula

a(n) = 4*A181667(n+1) - 1. - William P. Orrick, Mar 19 2017

A001992 Let p = n-th odd prime. Then a(n) = least prime congruent to 5 modulo 8 such that Legendre(a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

5, 53, 173, 173, 293, 2477, 9173, 9173, 61613, 74093, 74093, 74093, 170957, 360293, 679733, 2004917, 2004917, 69009533, 138473837, 237536213, 384479933, 883597853, 1728061733, 1728061733, 1728061733, 1728061733
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 5 mod 24. - Jianing Song, Feb 17 2019
Also a(n) is the least prime r congruent to 5 mod 8 such that the first n odd primes are quadratic nonresidues modulo r. Note that r == 5 (mod 8) implies 2 is a quadratic nonresidue modulo r. See A001986 for the case where r == 3 (mod 8). - Jianing Song, Feb 19 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001986 (the congruent to 3 mod 8 case), A001987, A094845, A094846.
See A094847, A094848, A094849, A094850 for the case where the terms are not restricted to the primes.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -1, return (0));); return (1);}
    a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 17 2017

Extensions

Corrected and extended by N. J. A. Sloane, Jun 14 2004

A241482 Least fundamental discriminant D > 1 such that the first n primes p have (D/p) >= 0.

Original entry on oeis.org

8, 12, 24, 60, 60, 364, 984, 1596, 1596, 1596, 3705, 58444, 84396, 164620, 172236, 369105, 369105, 731676, 731676, 3442296, 3442296, 32169916, 32169916, 47973864, 47973864, 47973864, 313114620, 313114620, 313114620, 313114620, 13461106065, 27765196680, 40527839121, 55213498824, 55213498824, 381031123720
Offset: 1

Views

Author

Keywords

Comments

By the Chinese Remainder Theorem and Prime Number Theorem in arithmetic progressions, this sequence is infinite.
a(n) is the least fundamental discriminant D > 1 such that the first n primes either decompose or ramify in the real quadratic field with discriminant D. See A306218 for the imaginary quadratic field case. - Jianing Song, Feb 14 2019

Examples

			(364/2) = 0, (364/3) = 1, (364/5) = 1, (364/7) = 0, (364/11) = 1, (364/13) = 0, so 3, 5, 11 decompose in Q[sqrt(91)] and 2, 7, 13 ramify in Q[sqrt(-231)]. For other fundamental discriminants 1 < D < 364, at least one of 2, 3, 5, 7, 11, 13 is inert in the imaginary quadratic field with discriminant D, so a(6) = 364. - _Jianing Song_, Feb 14 2019
		

Crossrefs

Cf. A003658, A232931, A306218 (the imaginary quadratic field case).
A002189 and A094847 are similar sequences.

Programs

  • PARI
    a(n) = my(i=2); while(!isfundamental(i)||sum(j=1, n, kronecker(i,prime(j))==-1)!=0, i++); i \\ Jianing Song, Feb 14 2019

Formula

a(n) > prime(n)^(4*sqrt(e) + o(1)). - Charles R Greathouse IV, Apr 23 2014
a(n) = A003658(k), where k is the smallest number such that A232931(k) >= prime(n+1). - Jianing Song, Feb 15 2019

Extensions

a(36) from Charles R Greathouse IV, Apr 24 2014
Showing 1-5 of 5 results.