cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001993 Number of two-rowed partitions of length 3.

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 22, 30, 45, 61, 85, 111, 150, 190, 247, 309, 390, 478, 593, 715, 870, 1038, 1243, 1465, 1735, 2023, 2368, 2740, 3175, 3643, 4189, 4771, 5443, 6163, 6982, 7858, 8852, 9908, 11098, 12366, 13780, 15284, 16958, 18730, 20692, 22772, 25058, 27478
Offset: 0

Views

Author

Keywords

References

  • G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
  • A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= n-> (Matrix(15, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -2, -4, 1, 3, 3, 1, -4, -2, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    a[n_] := (Table[Which[i == j-1, 1, j == 1, {1, 2, 0, -2, -4, 1, 3, 3, 1, -4, -2, 0, 2, 1, -1}[[i]], True, 0], {i, 1, 15}, {j, 1, 15}] // MatrixPower[#, n]&)[[1, 1]]; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)).

Extensions

More terms from James Sellers, Feb 09 2000