cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002040 Related to partitions.

Original entry on oeis.org

1, 2, 4, 8, 21, 52, 131, 316, 765, 1846, 4494, 10944, 26654, 64798, 157502, 382868, 931028, 2264106, 5505777, 13387880, 32553601, 79156974, 192479838, 468039888, 1138098210, 2767421826, 6729311459, 16363118556, 39788886610, 96751470494
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 21*x^4 + 52*x^5 + 131*x^6 + 316*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 29; f[q_] := Product[1 - (-q)^k, {k, 1, max + 1}]; CoefficientList[ Series[1/f'[q], {q, 0, max}], q] (* Jean-François Alcover, Jun 18 2012, after Michael Somos *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / D[ Normal @ Series[ QPochhammer[ -x], {x, 0, n + 1}], x], {x, 0, n}]]; (* Michael Somos, May 31 2016 *)
  • PARI
    {a(n) = polcoeff( 1 / eta( -x + x^2 * O(x^n))', n)};

Formula

G.f.: 1/(f(q)') where f(-q)=Product_{k>0} (1-q^k) is one of Ramanujan's theta functions. - Michael Somos, Apr 08 2003
a(n) = sum_{k=0..n} (-1)^k*A000041(k)*A002039(n-k). - Mircea Merca, Feb 27 2014
a(n) ~ c * d^n, where d = -1/A143441 = 2.431619934495323994754... and c = 0.623278923942755977756856780504941340332933121682037117752100... - Vaclav Kotesovec, Jun 02 2018

Extensions

Formula corrected and sequence extended by Michael Somos