cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002046 Larger of amicable pair.

Original entry on oeis.org

284, 1210, 2924, 5564, 6368, 10856, 14595, 18416, 76084, 66992, 71145, 87633, 88730, 124155, 139815, 123152, 153176, 168730, 176336, 180848, 203432, 202444, 365084, 389924, 430402, 399592, 455344, 486178, 514736, 525915, 669688, 686072
Offset: 1

Views

Author

Keywords

Comments

The elements 76084, 123152, etc. are intentionally out of numerical order so that a(n) and A002025(n) form amicable pairs. - Michael B. Porter, Apr 17 2010
All terms are deficient (A005100). - Michel Marcus, Mar 10 2013
For the related amicable pairs see A259180. - Omar E. Pol, Jul 15 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For additional references see A002025.

Crossrefs

Programs

  • Maple
    f:= proc(t) uses numtheory; local s;
      s:= sigma(t) - t; s > t and sigma(s) - s = t
    end proc;
    Am1:= select(f,[$1..10^6]);
    map(numtheory:-sigma,Am1); # Robert Israel, Jul 16 2015
  • Mathematica
    amicableQ[n_] := With[{s = DivisorSigma[1, n] - n}, r = n != s && n == DivisorSigma[1, s] - s; If[r, mate[n] = s; True, False]]; mate /@ Select[ Range[lim], amicableQ[#] && # < mate[#] &] (* Jean-François Alcover, Sep 20 2011 *)
    Table[DivisorSigma[1, A002025[n]] - A002025[n], {n, 50}] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA002046(n)={if (n>1, local(a);a=aliquot(n);aMichael B. Porter, Apr 17 2010

Formula

a(n) = A259180(2n) = A180164(n) - A259180(2n-1) = A180164(n) - A002025(n). - Omar E. Pol, Jul 15 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 25 2000