A002072 a(n) = smallest number m such that for all k > m, either k or k+1 has a prime factor > prime(n).
1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 31887350832896, 119089041053696, 2286831727304144, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 19316158377073923834000
Offset: 1
Examples
a(1) = 1 since for any number k greater than 1, it is impossible that k and k+1 both are powers of 2, so at least one of them has a prime factor > 2. (For m = 0 this would not hold for k = 1, k+1 = 2.) a(2) = 8 since for any larger k, we cannot have k and k+1 both 3-smooth (cf. A003586). 31887350832897 = 3^9*7*37*41^2*61^2, 31887350832896 = 2^8*13*19*23*29^4*31, this number appears twice because there is no pair of numbers with max. factor = 67 that is larger than this number.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Lucas A. Brown, Python program.
- E. F. Ecklund and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79 (1972), 1082-1089.
- D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57-79.
- Don Reble, Python program
- Jim White, Results to P = 127
- Wikipedia, Størmer's theorem
Programs
-
Mathematica
smoothNumbers[p_?PrimeQ, max_Integer] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand[Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]] }, {j, 1, k}]; Sort[Flatten[Table[Times @@ (pp^aa), Evaluate[ Sequence @@ iter]]]]]; a[n_] := Module[{sn = smoothNumbers[Prime[n], Ceiling[2000 + 10^n/n]], pos}, pos = Position[Differences[sn], 1][[-1, 1]]; sn[[pos]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 17 2016, after M. F. Hasler's observation *)
-
PARI
A002072(n, a=[1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024])=a[n] \\ "practical" solution for use in other sequences, easily extended to more values. - M. F. Hasler, Jan 16 2015
-
PARI
A2072=List(1); A002072(n)={while(#A2072
best && isSmooth(sol, P) && isSmooth(sol+1, P) && best=sol, p=primes([1, P])); for(i=1, 2^#p, i==2 && next; my(qq = 2*vecprod(vecextract(p,i-1)), qn = [qq, sqrtint(qq), 0, 1], cf = [1,0,0,1], xi, aa, x0, x1, y0, y1); until(x0, aa = (qn[2]+qn[3])\qn[4]; qn[3] = aa*qn[4] - qn[3]; qn[4] = (qn[1] - qn[3]^2) \ qn[4]; cf = [aa*cf[1]+cf[3], aa*cf[2]+cf[4], cf[1], cf[2]]; cf[1]^2 - qq*cf[2]^2 == 1 && [x0,x1, y0,y1] = [x1, cf[1], y1, cf[2]] ); isSmooth(y0, P) || next; check(xi = x0); check(x1); for (i=3, max(P\/2, 3), [x0, x1] = [x1, x1 * xi * 2 - x0]; check(x1)))/*for i*/; listput(A2072, best) } \\ Following Don Reble's Python program. - M. F. Hasler, Mar 01 2025
Formula
a(n) < 10^n/n except for n=4. (Conjectured, from experimental data.) - M. F. Hasler, Jan 16 2015
Extensions
More terms from Don Reble, Jan 11 2005
a(18)-a(26) from Fred Schneider, Sep 09 2006
Corrected and extended by Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations.
Comments